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Preface

Adam Smith’s last words in 1790: I believe we should adjourn this meeting
to another place. The meeting is re-adjourned—as it has been so many
times. The focus is on adaptive drift modeling—models that adapt to the
specific evolving market and then drift over time. Forecasting procedures
are for purposes of active trading in finance and betting against the line in
sports. Such modeling has relevance to other evolving markets, including
the influenza markets.

There is ample motivation for this book: the recent financial market
abyss, the proliferation of sports gambling, the metastasis of lotteries, the
ongoing epidemics of financial and mathematical illiteracy—epidemics
that are allied with the emerging epidemic of adolescent problem
gambling—and the assortment of sausage legislation proposed for
financial market reform and regulation and legalized online gambling.
All of these topics are driven by a common denominator: human
behavior—the type of behavior that has been described as the madness of
crowds combined with the cunning of the few .

Thomas Huxley, the 19th-century biologist and defender of Darwin, said
that the great tragedy of science was the slaying of a beautiful hypothesis
by an ugly fact. A counter opinion is that the beauty of science is the
eventual slaying of outdated hypotheses and dogma through evolving and
enlightened inquiry.

For over 50 years, the prevailing investment wisdom was buy and hold for
the long term . Indeed, markets were said to be efficient in which case active
or short-term trading would inevitably result in portfolio losses. Researchers

ix
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were quick to apply efficient market dogma to the sports gambling markets:
that is, that over the longer term, the bookmakers’ lines can’t be beaten.
Popular books such as A Random Walk Down Wall Street (Malkiel, 1985)
portrayed active traders as inevitable losers. Even the Wall Street Jour-
nal carried a series that compared dart throwing in selecting equities with
selections by expert traders.

However, with financial market deregulation and the entry of hedge
funds, particularly during the latter stages of the Clinton Administration,
active trading strategies began to dominate the buy-and-hold strategies.
Financial innovations began to sprout under the cover of efficient mar-
ket dogma. Finally, the innovations bubbled and the dogma crumbled. In
testimony before Congress in 2006, former Fed Chairman Alan Greenspan
humbly admitted: I made a mistake in presuming that the self interests of
organizations, specifically banks and others, were such that they were best
capable of protecting their own shareholders and their equity in the firms .

In lay terms, hedge funds are investment vehicles limited by law to the
very rich. In contrast to mutual funds, they are largely unregulated and invest
opaquely. They hedge their investment monies, not so much in the sense of
hedging or protecting against risk , but rather for purposes of maximizing
profits. Hedge funds are known as quant funds when they employ quantita-
tive (statistical) modeling in forecasting short-term price movements. Quant
funds were subjected to severe criticism when the subprime mortgage cri-
sis spilled over to other financial markets—at which point the hedge funds
were affected adversely. In many quarters, quant modeling was condemned,
sometimes in buffoonish fashion, along with the efficient market hypothesis.

When you see a quantitative “expert,” shout for help, call for his disgrace,
make him accountable. Ask for the drastic overhaul of business schools.. . .
Ask for the Nobel Prize in Economics to be withdrawn from the authors of
these theories, as the Nobel’s credibility can be extremely harmful. (Taleb and
Triana, 12/8/08)

A number of explanations were given for the forecasting failures of quant
modeling—failures that also apply to forecasting in the sports gambling
markets.

1. It is typically the case that modeling complexities induce less capable
analysts to impose invalid or oversimplified modeling assumptions,
which usually lead to invalid forecasts, especially during periods of
unexpected volatility.

2. Quant models have short shelf lives and tend to be of limited value
when they are not updated on a continuing basis to accommodate
changing market dynamics.
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3. Recent relevant and vital information, often from allied sciences, is
not incorporated in the model-building procedure. (For example, the
weather determines price differences in the agricultural commodities
market, which has led hedge funds to hire meteorologists to interact
with their traders.)

4. With so few qualified modelers, the best modelers are lured away by
competing funds. The modelers then use the same models to chase
the same money.

5. Market shocks (i.e., unexpected, often unpredictable events) are either
not incorporated or are incorporated inappropriately in forecasting
models. Moreover, there has been a failure to recognize that the
volatility associated with sufficiently large shocks may destabilize
model structure, at least temporarily, to the extent that model forecasts
become unreliable.

6. In situation 5, there is typically a failure to reconstruct and adapt the
forecasting model so that it applies to evolving market conditions,
which includes adapting the model to incremental changes during
periods when markets are relatively stable.

Given the highly competitive and risky environments of current-day
financial and sports gambling markets, the focus is on the dynamic process
of constructing effective forecasting rules that are based on both graphi-
cal patterns and adaptive drift modeling of cointegrated time series. The
graphical patterns are in terms of candlestick charts and their variants, a
well-known charting procedure dating back to feudal Japan. Charting objec-
tives are to identify optimal time periods in financial markets and optimal
games in sports gambling markets for which forecasting rules and models
are likely to provide profitable trading or wagering outcomes.

The modeling of cointegrated time series means that forecasts are with
reference to a system of simultaneous time series wherein long-term rela-
tions exist between the individual series comprising the system. Disequilib-
ria between such relations are known to affect subsequent outcomes within
individual relations. As such, estimates of the between-series disequilibria
can be used in forecasting subsequent movements within the individual time
series. For example, consider a time-varying, emotional attachment variable
for each of two lovers. The two variables are clearly related, but the relation
between the two is subject to disequilibria over time. When, at any point
in time, a major disequilibrium occurs—in the sense of, say, a temporarily
strained personal relationship—the tendency is for the relation to return sub-
sequently to normal. In this case, between-relation disequilibria can be used
to predict subsequent outcomes for each of the individual variables. On the
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other hand, the disequilibria can become sufficiently large—analogous to
periods of extreme volatility in financial markets—to the extent that the
lovers may split (temporarily or permanently) and their responses may no
longer be cointegrated.

Optimal profit-making situations in financial markets occur when mar-
kets are inefficient , in which case short-term price movements are more
likely to be predictable. In the sports gambling markets, periods of market
inefficiency are in terms of forthcoming games where outcomes are likely
to differ considerably from the bookmakers’ lines.

Shocks, defined as unexpected deviations from the norm (or from what
is expected), may or may not be predictable. However, once they occur
and are known or estimated, their effects are often highly consequential in
effectively forecasting subsequent outcomes. In fact, shocks are the key to
successful forecasting in the markets under study.

Shocks are best illustrated in modeling National Football League or
National Basketball Association game outcomes. A bookmaker’s line on
a game is based on the gambling public’s expectation of what the game
outcome will be. Specifically, the bookmaker’s job is to determine that line
(or spread) which evenly divides the money wagered on the game. Since
the parties covering the bets charge a commission (usually, 10 percent) on
each bet that is made, it is irrelevant whether the line is realistic or not as
long as the payouts to the winners are covered by the losers’ losses.

To illustrate the effects of gambling shocks, suppose that a heavily
favored team is upset by an underdog, such as having the 2008–2009 Los
Angeles Lakers, an 11.5-point favorite, lose to the Sacramento Kings in
midseason. The likely Laker team reaction to the loss is to reevaluate game
strategies, identify mental lapses, elevate testosterone levels, and then make
up for the miserable performance not only in their next game or games
but also in their next meeting with the Kings. In this context, the gam-
bling shocks are reflections of physiological–psychological–sociological
variables that affect player and team personnel. As such, shocks tend to
be determining factors in subsequent game outcomes. Discussions of shock
effects in financial markets, termed moving average effects, are presented
in Chapter 4.

The creation of sports hedge funds appears inevitable—if they do not
already exist in the opaque and ill-regulated world of hedge funds. A bet
on the favored 2009 New York Yankees in October carried less risk than
an active trader’s long or short position on Bank of America during the
same time period—at least for bettors without access to insider informa-
tion. In a similar vein, online sports gambling will eventually be legalized
for purposes of enriching government coffers—in the same way that Pro-
hibition was repealed to provide lucrative tax revenues. Concurrently, the
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lottery markets will continue to flourish in the form of stupidity taxes that
prey on those who are infected by the raging epidemics of mathemati-
cal and financial illiteracy and the related epidemic of adolescent problem
gambling.

The great economist Woody Allen once said: More than any time in our
history, mankind faces a crossroads. One path leads to despair and utter
hopelessness, the other to total extinction. Let us pray we have the wisdom
to choose correctly . Financial and sports gambling markets will continue
to be an inevitable part of the economic and social fabric for unforeseeable
future generations. Reasonable courses must be chartered. This meeting will
be readjourned again and again and again.

Updates of adaptive drift modeling forecasts in sports gambling and
financial markets are available at www.MalliosAssociates.com .
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1
Introduction

1.1 FAVORABLE BETTING SCENARIOS

The buy-and-hold strategies under efficient market dogma have shifted
toward active trading strategies under adaptive market alternatives. Microe-
conomics appears to be back. It would be better if, as Keynes said, markets
were not the by-product of a casino. But, in fact, they are.

In light of the greatest downturn since the Great Depression, the shift
to active trading is not without critics. Under Saint Joan’s banner, French
President Sarkozy has taken steps to instill moral values in the global mar-
ket economy by urging policymakers to consider fresh ways of combating
financial short-termism1 (Hall, 1/3/09). Perhaps Mr. Sarkozy has taken a
perverse view of Keynes’ dictum that economics is a moral and not a natural
science.

The recessionary angst of late 2008 saw many favorable betting sce-
narios in financial and sports gambling markets. Attractive bets included:

1In an effort to add intellectual glamor and impetus to his presidency, Sarkozy proposed
that Albert Camus’ remains be moved from his simple village grave in Lourmarin to the
Pantheon in Paris, burial place of France’s greatest heroes and intellectual leaders. Sarkozy
has made an art of snatching high-profile figures from the left for his government to offset his
occasional foray farther right on issues such as immigration and security (Thompson and
Hollinger, 12/02/09).

Forecasting in Financial and Sports Gambling Markets: Adaptive Drift Modeling, By William S. Mallios
Copyright  2011 John Wiley & Sons, Inc.
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2 INTRODUCTION

establishing short positions on Goldman Sachs shares during November
and betting on the Los Angeles Lakers (favored by 3 points) in their
Christmas Day rematch with the Boston Celtics. (The Celtics embarrassed
the Lakers in the previous National Basketball Association championship
series). The attractiveness of each bet depended on the effectiveness of the
gambler’s forecasting models—models that are assumed based on public
information.

It has been argued that profitable modeling forecasts tend to favor the
sports gambling markets since they are accommodated by greater regulation
and surveillance, considerably less opacity, and public point spreads that
reflect the gambling public’s expectations. For example, the New England
Patriots’ loss to the New York Giants in the 2008 Super Bowl was an out-
come that superseded the New York Jets’ upset win over the Baltimore Colts
in the 1969 Super Bowl. The Patriots were prohibitive 12-point favorites;
the bookmakers’ line on total points scored was 53.5. Relative to the lines
on the difference and total points scored, the Patriots had vastly overper-
formed throughout the first half of the season, then underperformed but
kept winning until the finale (see Figure 1.2.2). New England had clearly
peaked by midseason.

In contrast, the Giants jelled in the second half of the season and peaked
during the play-offs (see Figure 1.2.3). In the finale, the Giants won 17–14,
an outcome that was easily amenable to effective forecasting; see Table 1.1.1
and the modeling procedure described in Section 10.2.

Relative to the line, the Giants’ expected winning margin of 3.4 points
was a far more realistic estimate of the outcome. (See Section 11.2 for the
calculation of the expected winning margin.) However, whether or not the
line is realistic, there are always two groups of winners—those covering2

the bets and those betting on the winning side of the line—and one group
of losers—those betting on the losing side of the line. Those covering the
bets charge a commission per bet and are always the winners as long as

TABLE 1.1.1 Super Bowl 2008: NE Patriots vs. NY Giants +12a

Outcome Odds to $1 Probability

Patriots to win by more than 7 points $2.01 to 1 0.33
Game decided by at most 7 points $13.3 to 1 0.11
Giants to win by more than 7 points $0.79 to 1 0.56

aNYG expected winning margin: 3.4 points. Outcome: NYG won by 3 points.

2In the United States, the service of accepting or covering a bet is typically provided by
the sports book at the casinos. In Europe the service is also provided by online bookmakers
such as Ladebrokes.
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the line splits the money wagered (i.e., losing bets pay off the winning bets
after commissions). Thus, a bookmaker’s line is simply a measure of the
gambling public’s expectation of a game’s outcome—regardless of whether
or not that expectation is realistic.

A financial market analogy to Table 1.1.1 is illustrated in terms of
Microsoft’s (stock symbol: MSFT) price movements during 1999–2000,
a volatile period during final inflation and deflation of the NASDAQ
bubble. From 3/27/00 to 4/3/00, the MSFT closing price dropped from
$53.13/share to $44.53/share. Figure 1.1.1 presents weekly price changes
and volumes through the January–June 2000 period, and Figure 1.1.3
presents these changes in terms of a candlestick chart (see Section 5.1 for
detailed discussions).

In Figure 1.1.3, each week in Figure 1.1.1 is represented by a candle-
stick that depicts four summary prices for MSFT: the opening price (O),
the high (H ), the low (L), and the closing price (C ) for the week. A can-
dlestick is composed of a body and a wick that extends above and below
the body. The body is white if C > O and dark if O > C . The maximum
(minimum) of the wick is the high (low) for the week; see Figure 1.1.2
for an illustration of three hypothetical candlesticks. The lower portion of
Figure 1.1.3 presents the 25- and 100-day moving averages for C (where
five trading days correspond to one week). The moving averages are based
on successive days prior to each weekly candlestick.

Figure 1.1.1 Line chart of weekly per share closing prices, including weekly volumes, for
Microsoft (MSFT).
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Figure 1.1.2 Three candlesticks with (1) H > O > C > L, (2) H > C > O > L, and (3) H > O =
C > L.

1

2

Figure 1.1.3 Candlestick chart for weekly per share Microsoft price changes including 25-
and 100-day moving averages and weekly volumes. (Source: MSN Money)

A short-term modeling objective was to forecast the change in the closing
price from 3/27/00 to 4/3/00; see box 1 in Figure 1.1.1. Adaptive drift
modeling led to the results in Table 1.1.2 (see Chapter 9). The forecast
correctly projected a significant drop in price, although the actual loss was
underestimated relative to the expected loss. The same modeling procedures
were used to forecast losses correctly through mid-May and gains in the
rebound that followed; see box 2 in Figure 1.1.1.
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TABLE 1.1.2 Odds on D(MSFT, t), the Change in the Closing Price per Share of
Microsoft from 3/27/00 to 4/5/00a

Outcomes for D(MSFT, t) Odds to $1 Probability

> $6 $19.0 to 1 0.05
[$6, $2) $11.5 to 1 0.08
[−$2, $2] $7.33 to 1 0.12
(−$2, −$6] $3.00 to 1 0.25
< −$6 $1.04 to 1 0.49

aExpected gain/loss for D(MSFT, t) = −$4.24. Observed gain/loss for D(MSFT, t) = −$9.60.

1.2 GAMBLING SHOCKS

A gambling shock (GS) is defined as the difference between the game
outcome and the line. For example, if the line on the difference favors
the Patriots by 12 points and they lose by 3 points, GS difference(NE) =
GSD(NE) = −3 − (12) = −15. If the line on the total points scored
in the Giants–Patriots game is 51 and the total points scored is 31,
then GS total(NE) = GS total(NYG) = GST (∗) = 31 − 51 = −20. Larger
values of |GSD | and/or |GST | for a particular team generally affect that
team’s subsequent performance or performances in that they may reflect
the effects of motivation, injuries, personnel problems, and so on—all
of which translate into physiological, psychological, and sociological
variables.

When, for example, the Giants suffered through two embarrassing losses
to the Dallas Cowboys during the 2007–2008 regular season, the likelihood
of a Giants’ upset win against Dallas in the play-offs was exceptionally high
(especially in view of the Giants late-season performances). In fact, when
the Giants lost a game throughout the regular season, they usually won their
next game (as shown in Figure 1.2.3).

When there are marked differences in player talent between opposing
teams, the GS may act as a surrogate for fans and teams in the evaluation of
team and player performances. The home team fans may take consolation
when their underdog team loses by less than the spread—especially if
they’ve bet on their team.

We play hard and cover. We lead the league in covering the point spread.
(Hubie Brown, coach of the last-place New York Knicks, Sports Illustrated,
1986)

Figure 1.2.1 depicts game outcomes and accompanying gambling
shocks for the 23 Los Angeles Lakers’ play-off games leading to their
2008–2009 National Basketball Association (NBA) title. The Lakers won
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Figure 1.2.1 2008–2009 NBA play-off games for Los Angeles Lakers with wins over Utah (5
games), Houston (7 games), Denver (6 games), and Oriando (won NBA title in 5 games).

in five games against Utah, seven against Houston, six against Denver,
and then five in the finale against Orlando. White bodies denote games
in which the Lakers beat the line on the difference. The minimum value
of the white body is the line on the difference for Lakers, and the
maximum of a white body is the Lakers’ winning/losing margin. Dark
bodies denote games in which the Lakers did not beat the line; that is,
the maximum value of a dark body is the line on the difference, and the
minimum value of a dark body is the winning or losing margin. A white
(dark) body indicates that the Lakers overperformed (underperformed)
relative to the line on the difference. The size (magnitude) of the body
reflects (equals) the size of the gambling shock on the difference for the
Lakers. An observed difference above (below) zero signifies a Lakers’
win (loss).

The size of the gambling shock for the total points scored is given
by the wick (or stick) that extends either above or below each body.
When the wick extends above (below) the body, GS total > 0 (GS total < 0).
For example, in the first play-off game against the Utah Jazz, the Lak-
ers were favored by 12 points and won 113–100; the line on the total
was 210.5. Thus, GS difference(LAL) = 13 − 12 = 1 (a small white body)
and GS total(LAL) = 213 − 210.5 = 2.5 (a short wick extending above the
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white body). In this game, the gambling public’s expectations were on the
rational side.

Several predictive indicators are apparent in Figure 1.2.1—indicators
that are revealed in analyses of Lakers’ regular-season games. (Note: The
obvious purpose of adaptive drift modeling is to uncover such indicators
so that they can be applied in successful forecasting of subsequent game
outcomes relative to the lines.)

Predictive Indicator 1: The Revenge Factor A Lakers’ (LAL) dark
or white body loss is followed by an LAL white body win. (Note: There
are no white body losses for LAL, but there is one for the New York Giants
in Figure 1.2.3.)

Predictive Indicator 2: The Complacency Factor An LAL dark
body win is followed by an LAL loss.

Predictive Indicator 3: The Exhaustion Factor An LAL larger-than-
average white body with a large lower stick tends to be followed by an LAL
red body (except for the last game).

Figure 1.2.1 Candlestick chart for the Los Angeles Lakers during the
2008–2009 play-offs, including the first round versus Utah (won in five
games; see box 1), the second round versus Houston (won in seven; see
box 2), the third round versus Denver (won in six; see box 3) and the
finals versus Orlando (won the NBA championship in five; see box 4).
Candlesticks are defined as follows: white body, LineDiff(LAL)> 0; dark
body, LineDiff(LAL) < 0; upper wick, GS Total(LAL)> 0; lower wick,
GS Total(LAL) < 0.

Predictive indicator 1, the revenge factor, reflects the motivation to win
convincingly in the game following a loss. Predictive indicator 2 may reflect
complacency on the part of the Lakers—in the sense that they won their
previous game but by less than the expected margin and that this same
complacency will characterize their performance in their subsequent game.
Predictive indicator 3 represents a larger than expected win and a lower than
expected total points scored—an outcome that tends to describe exceptional
offense and defense effort on the part of the Lakers. To achieve both in a
single game may presage fatigue in the following game. The exception to
predictive indicator 3 is the sixth and last game of the play-offs—a point in
the series where Orlando appeared to have thrown in the towel (analogous
to the LAL loss in the sixth and last game against the Celtics in the finale
of the 2007–2008 play-offs).
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Figure 1.2.2 New England Patriots: 2007–2008 regular season and three play-off games,
ending with Super Bowl loss to New York Giants.

The three indicators frequently characterize exceptional NBA teams such
as the 2008–2009 Lakers, the 2007–2008 Celtics, and the San Antonio
Spurs during their recent championship seasons. For teams of lesser talent,
predictive indicators tend to interact with a variety of other variables and
often require more complicated explanations. The key point to be empha-
sized is that each team tends to be unique and that forecasting models should
be team specific. Universal models that are said to apply to all teams are
as useful as deterministic models of human behavior.

For the Giants’ 2008 Super Bowl win over the Patriots, the candle-
stick charts in Figures 1.2.2 and 1.2.3 depict, respectively, all regular and
postseason games for the Patriots and Giants in 2007–2008 which cul-
minated in the Giants’ Super Bowl win and the Patriots’ only loss of
the season.

The Patriot chart in Figure 1.2.2 depicts a classic example of a team
that had peaked by midseason. Specifically, white bodies dominate the
first half of the season and dark bodies dominate the last half. Moreover,
GST > 0 dominates in the first half and GST < 0 is overrepresented in the
second half.

The chart for the Giants in Figure 1.2.3 contrasts sharply with that for the
Patriots. The Giants began the season poorly, losing to the Dallas Cowboys
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Figure 1.2.3 New York Giants: 2007–2008 regular season and four play-off games, ending
with Super Bowl win over the New England Patriots.

35–45 in week 1 and to the Green Bay Packers 13–35 in week 2. These
losses were followed by a succession of five white body wins, followed by
a seven-week period of mediocrity, and ending in a succession of six white
bodies.

With the exception of the first week, a Giants’ loss was always followed
by a white body win, as was the case for the Lakers in Figure 1.2.1. Also
similar to the Lakers, the single dark body win is followed by a dark body
loss. Although not shown in the chart, a loss by the Giants was followed
by a win against that team if they met for the second time during the
season—with the exception that the Giants lost to Dallas twice during
the regular season prior to beating the Cowboys in the play-offs (see the
forecasts for the Giants’ play-off games in Section 9.1).

1.3 THE DARK SIDE OF SPORTS: THE FIXES

The only good thing that can be said about the dark side of sports is that it is
pale in comparison to the dark side of finance.

Regarding the line on any given game, profits for those covering the
bets are assured from rules such as the 11 for 10 rule: the gambler puts up
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$11 for each $10 bet. Once posted publicly, the line is adjusted whenever
necessary to balance the total amount that was bet. Kenny White of the
Las Vegas Sports Consultants has been quoted as saying that the movement
of the line by half a point typically indicates betting on one side of about
$50,000.

When the line is rational, as in the rational expectations hypothesis (see
Section 2.1), the market is efficient. Irrational lines are indicative of market
inefficiency. There is no comparable line in financial markets3 for the simple
reason that prices could easily be manipulated to beat such a line.4

While involvement of players in fixing games in the U.S. professional
ranks is highly unlikely, there are understandably concerns by the NCAA
in college sports. College athletes are not salaried, and many are in school
for the express purpose of participating in their athletic specialty. In addi-
tion, many of these athletes are from low-income areas of inner cities. As
such, college sports are susceptible to violations and scandals and fixes that
include point shaving.

Regarding NCAA violations, the following allegations are said to repre-
sent the tip of the iceberg:

1. The Memphis men’s basketball program was charged by the NCAA
with major violations during the 2007–2008 season.

2. Wolfers (2006) suggests that point-spread shaving may have
influenced outcomes in nearly 500 games over a 16-year period.
Wolfers looked at point-spread favorites of 12 or more points and

3In proposing changes in compensation incentives for business executives, Martin argues
that a stock price in business is the moral equivalent of a point spread in football betting.
However, while National Football League players are forbidden from betting on the spread
and are compensated, not on the line, but on their field performances, business executives
are compensated primarily on increases in stock prices. . . instead of real-market measures
such as revenue growth, market share, profits and book equity return (Martin, 5/12/09).
4In sports gambling markets, there are strong arguments for discounting the possibility of a
fix. To assure a “fix” one would have to bribe or threaten a player who plays the majority of
the games and [whose earnings are in the millions]. The size of the bribe required to induce
a player to forgo this salary for the rest of his career if caught therefore would be very large.
This, in turn, would require that an extremely large amount of money be bet on the game
in question to cover the bribe and make a profit . . .It is very unlikely that any bookmaker
would take such a large bet and if one attempted to break up the bet into a more reasonable
size. . .the level of activity on a single game clearly would be noticed by the bookmakers and
probably would lead them to call off all bets on the game (Dobra et al., 1990). Although there
have been no recent allegations of fixes by players in the professional ranks, the same is not
true for referees and umpires. This topic is discussed in Section 11.4, where surveillance
procedures are proposed for detecting possible referee and umpire irregularities in Major
League Baseball (MLB), National Basketball Association (NBA), and National Football
League (NFL) games.
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concluded those teams tend to cover the point spread at a lower rate
than they should. While that one statistic isn’t enough to conclude
there is something unusual going on, Wolfers also mentions the NCAA
survey where eight out of 388 basketball players admitted to taking
money in exchange for playing poorly or at least had knowledge of
teammates who did (Alan Moody, About.com).

3. In 1951, City College of New York, the collegiate basketball
champion, became the symbol of corruption when its players were
among 33 players from seven universities arrested for fixing 86
games.

4. In 1961, North Carolina State was involved in point-shaving scandals.
Everett Case, then N.C. State coach, blamed it on players from the
north that he had recruited. Sport writer Red Smith wrote that Case got
integrity confused with geography . Congress then passed the Interstate
Wire Act in 1961 to prevent sports gambling. In simple terms, the
Wire Act makes it illegal to book bets on the phone or through the
Internet. Whittier law professor Nelson Rose said: The Wire Act was
designed to cut “the wire” which was the telegraph that every illegal
bookie had to have to know who won a horse race before his patrons
(Bowe, 7/24/06).

NBA referee Tim Donaghy officiated in 772 regular-season games and
20 play-off games from 1994 to 2007. Donaghy was alledged to have
bet on games that he officiated during his last two seasons and to have
made calls affecting point spreads on those games. Donaghy pleaded guilty
to two federal charges related to the investigation and was sentenced to
prison. However, he could face more charges at the state level if it is
determined that he deliberately miscalled individual games. According to
data obtained from a Las Vegas company, Donaghy refereed in 11 games
after 1/1/2007 in which the consensus Las Vegas line moved two points
or more. The team on which bettors wagered heavily enough to move the
line that far won seven of those 11 games . . . . A 7–4 record would not
be compelling to a statistician, who would consider the good possibility
of that happening randomly. But Jimmy Vaccaro, the chief oddsmaker for
American Wagering, which runs 60 sports books across Nevada, said that
such performance would leave any gambler giddy . . . . If you win seven out
of 11, more than 60%, you’d be a billionaire in about a year5 (Schwarz,
7/21/07).

5Graphical methods for monitoring individual referee performances in terms of game out-
comes relative to point spreads on those games are presented in Section 10.8.
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More recently, in November 2009, match fixing in European football was
faced with a startling revelation. The Union of European Football Associ-
ations, soccer’s governing body in Europe, reported without a doubt the
biggest fraud scandal to ever hit European football . The game had seen
bribery scandals almost since the rules of the game were codified in 1863.
Investigations identified approximately 200 games in which there was sus-
pected fraud. Sports authorities have been slow to realize the scale of the
problem. If fans come to believe that the product they are watching is rigged,
then they may turn off. It happened to other once-popular sports: rowing
was a phenomenon in Britain in the 19th century before it became tainted
by match-fixing (Kuper and Blitz, 11/21/09).



2
Market Perspectives:

Through a Glass Darkly

2.1 CHANGING PARADIGMS

October is one of the peculiarly dangerous months to speculate on stocks.
The others are July, January, September, April, November, May, March, June,
December, August and February. (Mark Twain)

In 1841, Mackay wrote: Money has often been a cause of the delusion of
multitudes. Sober nations have all at once become desperate gamblers, and
risked almost their existence upon the turn of a piece of paper . . . . Men,
it has been said, think in herds; it will be seen that they go mad in herds,
while they recover their senses slowly, and one by one. A century later,
Keynes was to view stock markets as casinos guided by animal spirits that
react in herds. By the early 21st-century finance was viewed as the mirror
of mankind, revealing every hour of every working day, the way we value
ourselves and the resources of the world around us. It is not the fault of the
mirror if it reflects our blemishes as clearly as our beauty (Fergusen, 2008).

Markets reflect the human condition as it oscillates between rational and
irrational states (Simon, 1984). Interactively, the human condition reflects
the dynamic nature of markets where periods of market efficiency are dom-
inated by rational-type behaviors and periods of market inefficiency by
irrational-type behaviors. The greater (less) the market inefficiency, the
greater (less) the likelihood of profitable trading rules and forecasts.

Forecasting in Financial and Sports Gambling Markets: Adaptive Drift Modeling, By William S. Mallios
Copyright  2011 John Wiley & Sons, Inc.
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Market inefficiency refutes the efficient market hypothesis (EMH),
developed independently by Fama and Samuelson in the 1960s. The EMH
assumes that current prices reflect all available information rationally and
instantaneously—as does a bookmaker’s line in sports gambling markets.
Three forms of the EMH in the sports gambling markets are (1) the weak
form , which assumes that the line incorporates all relevant information
in past games; (2) the semistrong form , which assumes that the line
incorporates all relevant public information as well as past game outcomes,
and (3) the strong form , which assumes that some bettors have access to
insider information (which is typically tied to knowledge of unpublicized
injuries or personnel problems).

However, somewhere along the way, what started as a critique of the
wrong way that people try to beat the markets turned into a source of new
techniques for making money. Specifically, the efficient market hypothesis,
the Nicene Creed of the market rationalists, inspired a wave of innovative
financial products, such as derivatives and securitized subprime mortgages,
that believers claimed would allow users to exploit the wonders of the mar-
ket. This gospel was embraced so enthusiastically by the markets that these
products soon accounted for trillions of dollars of trades. Then it turned out
that the market was not rational after all. Trillions were wiped out and, as
one of the cheerleaders for rationality, Alan Greenspan, the former chair-
man of the Federal Reserve, put it, “the whole intellectual edifice collapsed”
(The Economist , 6/11/09).

Behavioral economists were highly critical of the EMH well before its
fall. Irrational-type behavior by market participants—which, according to
behavioral economists, typifies most participants most of the time—refuted
the EMH and its companion, the rational expectations hypothesis (REH).
The REH stipulates that people’s expectations are informed predictions of
future events and are essentially the same as predictions of relevant theory
(Muth, 1981). Granger (1980) noted that REH proponents typically fail
to specify a relevant theory that is generally accepted by the majority of
economists.

EMH opponents have long argued that markets operate inefficiently when
buyers and sellers have unequal access to information needed to make opti-
mal choices. Apart from access to insider information, such informational
asymmetry has been attributed to constraints on participants’ decision-
making abilities.1 Under such constraints, participants possess only bounded

1Given the inability of most participants to extract information successfully from accessible
data due to a lack of knowledge, time, or cost constraints, one cannot ignore the ongoing
financial/mathematical illiteracy pandemic in the United States. Data per se are seemingly
useless except for those well versed in information extraction or the limited few who can
afford payment for such extraction (see Section 12.1).
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rationality and must make decisions by satisficing or choosing that which
may not be optimal but which they think will make them happy (Simon,
1984).

Dating back to the 1950s, assumptions regarding how people behave were
at two poles: (1) rational behavior (as in the EMH) and (2) mindless behav-
ior, resembling nuts and bolts in a large complex machine, as quantified
in terms of multidimensional structural regression systems, which gained
prominence in the 1950s (Marwah, 1997). In contrast, psychologists, led by
A. Tversky (Tversky et al., 1981) and Nobel laureates D. Kahneman (Kah-
neman and Tversky, 1979) and V. Smith (2000), tested how people really
do behave and, in doing so, created the discipline of behavioral economics
and finance. In general, they found that people gather limited information,
reason poorly, and act intuitively rather than rationally. Their conclusions
were a devastating blow to postulates of rational decision making.2

In attempting to bridge differences between EMH and behavioral
hypothesis alternatives, Lo (2004) applied principles of evolutionary
biology—competition, adaptation, and natural selection—to the markets
and formulated the adaptive market hypothesis (AMH).3 Lo argued
that much of what behavioralists cite as counterexamples to economic
rationality—loss aversion, overconfidence, overreaction, and other
behavioral biases—are consistent with an evolutionary model of people
adapting to a changing environment and that market efficiency is highly
context dependent and dynamic.

Specifically, the degree of market efficiency is related to market ecology
factors such as the number and types of competitors in the market, the
availability and magnitude of profit opportunities, and the adaptability of
the market participants (Lo, 2005). There is, however, one big difference
between nature and finance. Whereas evolution in biology takes place in
a natural environment, where change is essentially random ,4 evolution in

2For five decades, the Chartered Financial Analyst Institute (CFAI) has been teaching the
tenants of analysis based on the EM. Recently, the CFAI asked members whether they
trusted market efficiency—and discovered that more than two-thirds of respondents no longer
believed market prices reflect all available information . . . . Although two-thirds of financial
professionals surveyed said they regarded behavioral finance a useful addition to the EMH,
just 14% thought it could alone become a new paradigm (Tett, 6/16/09).
3Evolutionary arguments are also evident in recent explanations of the human herd effect .
Burnham (2005) argues that humans have a lizard brain component that evolved when life
was primitive. This part of the brain seeks clusters, which is useful when there is a need
to avoid harm or find food instantly. However, for more complex adaptive systems such as
financial markets, the danger is that investors get trapped into herd reasoning by buying at
the top and selling at the bottom.
4Darwinian evolution proceeds through the natural selection of random hereditable changes
or mutations. However, following the mutations, the survival of the fittest is not random.
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financial services occurs within a regulatory framework where—to borrow
a phrase from anti-Darwinian creationists—“intelligent design” play a part
(Ferguson, 12/13/07).

2.2 MODELING COMMENTARIES

For the markets under study, adaptive drift modeling is developed as an
alternative to existing versions of dynamic modeling based on Bayesian
learning; (see Section 7.4). Given the notoriety associated with the failures
of statistical (quant ) modeling during the 2007–2008 financial crisis, we
begin by distinguishing between adaptive statistical modeling and expert-
knowledge, nonstatistical modeling5 (even though the two can be integrated
in terms of Bayesian analyses). Proponents of the latter include those who
have done remarkably well in their long-term investments as well as those
who view the future as mostly unknowable.6

Statistical modeling proponents view the near term as predictable during
periods of market inefficiency if the modeling procedure adapts effectively
to market dynamics and if it is recognized that sufficiently large shocks
may disrupt model validity. Such sufficiently large shocks are analogous
to antigenic shifts in molecular biology, or the Gould–Eldredge theses of
punctuated equilibrium in evolution (see Section 4.3).

Commentaries by statistical modeling skeptics range from reasoned to
unequivocal. Clausewitz, in his treatise On War , wrote: It is simply not
possible to construct a model for the art of war . . . . Such a faulty model
creates an absurd difference between theory and practice which not only
defies common sense, but, even worse, too often serves as a pretext by limited
and ignorant minds to justify their congenital incompetence.

Later, in 1869, General William Tecumseh Sherman wrote: I know there
exist many good men who honestly believe that one may, by the aid of modern
science, sit in comfort and ease in his office chair and, with figures and
algebraic symbols, master the great game of war. I think this is an insidious
and most dangerous mistake.

5Anthropologists use the neologisms emic and etic as terms for the insider’s view (the expert
opinion approach) and the outsider’s view (e.g., the statistical modeling approach). During
his stint on Monday Night Football, Howard Cosell provided a noninformative etic view.
He had little knowledge of football but enhanced the network’s coffers by mesmerizing the
ranks of the viewing audience with his soap opera monologue and quips: Sports is the toy
department of human life.
6As Karl Popper observed, to predict the creation of the wheel is to invent it. Paraphrasing
Kay (11/26/08), to anticipate a new market theory is to take the main step in bringing it into
being .
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In a Ph.D. thesis written in 1900 at the University of Paris, Louis Bache-
lier (1964) was the first to state that stock prices follow a random walk
model. Bachelier’s work is said to have influenced Einstein in his 1905 work
on Brownian motion—although Einstein makes no such acknowledgment
in his book on the topic.

In the early 1950s, in a search for regular cycles, M. G. Kendall
applied statistical methods, now largely outdated, in examining the
behavior of stock and commodity prices. Instead of discovering regular
cycles, he found that prices appeared to follow a random walk. Kendall’s
analysis results are a modeling consequence of the EMH. The random
walk viewpoint persisted strongly, even into the early 21st century.
From earlier days when the EMH held court, the following commentary
prevailed: The price-determining mechanism described as the random walk
model is the only mechanism which is consistent with the unrestrained
pursuit of profit motive by participants in markets of this type (Granger,
1970).

Beginning in August 2007, dismal performances of quant funds prompted
considerable commentary on the failures of statistical modeling. Modeling
skeptics again came to the forefront. In Black Swan, Taleb (2007) describes
history as opaque, essentially a black box of cause and effects, and his
Fooled by Randomness (2005) has become an idiom used to describe when
someone sees a pattern where there is just random noise.

Following publication of Moneyball by financial journalist Michael
Lewis (2003), the baseball community reacted adversely to the notion that
statistical modeling could beat trained professionals. Such reactions were
somewhat marginalized by the success of Billy Bean, general manager
of the Oakland Athletics. Bean, Moneyball’ s central character, succeeded
Sandy Anderson as general manager in 1998 and expanded on Anderson’s
application of sabermetric principles.

Sabermetrics , derived from the acronym SABR (Society for American
Baseball Research), has been defined as the search for objective knowledge
about baseball. Sabermetrics attempts to answer objective questions about
baseball, such as Which player on the Phillies contributed most to the team’s
offense? Or, how many RBI’s will Alex Rodriguez hit next year? It cannot
deal with the subjective judgments which are also important to the game,
such as Who is your favorite player?

In assessing risk and rewards, Bean viewed the search, identification,
and purchase of undervalued baseball players, particularly in less well
researched markets such as Asia and Central and South America, the same
as a financial analyst’s search, identification, and purchase of undervalued
financial assets in emerging economies. In identifying hidden talents among
prospective players, Bean utilized baseball statistics that were, at the time,
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unconventional. Bean coveted Kevin Youkilis because of one overlooked
skill: his ability to draw walks. Bean said that Youkilis was the Greek God
of Walks . Bean reasoned that the ability to take walks showed a good eye
and great discipline—skills that are difficult to teach. Pitchers are obliged
to throw such batters balls that they can hit. With the Boston Red Sox,
Youkilis was to become one of baseball’s most feared hitters (Authers,
5/23/09).

Theo Epstein, general manager of the Red Sox, was to follow Billy
Bean in the use of baseball data mining techniques. The baseball modeling
results for the Red Sox and Oakland Athletics in Sections 7.4 and
7.5 are intended to provide insights on forecasting team and pitcher
performances.

2.3 SPORTS HEDGE FUNDS

When I was young, people called me a gambler. As the scale of my operations
increased, I became known as a speculator. Now I am called a banker. But
I have been doing the same thing all thee time. (Quotation from Sir Ernest
Cassel, private banker to King Edward VII)

Gambling is said to refer to games of pure chance (e.g., lotteries and
roulette and slot machines) in which participants pursue monetary gains
without using their skills and the odds of winning are independent (or
nearly so) of the participants’ skills. In contrast, monetary returns from
speculation and investment depend on participants’ skills. According to
Keynes, speculation. . . describes a situation where, instead of trying to make
a forecast about the probable yield of an investment over [the longer term],
people try to guess how the market, under the influence of mass psychol-
ogy, will value it [in the near term]. The Keynes-type speculator is the
likely participant in sports gambling markets, although participants cover
the spectrum from lottery and roulette mentalities to those possessing inside
information.

There has been a public tendency to view sports gambling and poker
as part of the same market. From a legal perspective, the regulation of
gaming appears to be based on whether the preponderance for an out-
come lies in pure chance or in some degree of skill. In terms of player
skills, the poker player confronts observable cards and opposing play-
ers while the sports gambler confronts the line and observable data. The
sports gambler usually has the advantage of greater time and information
(unless there is a complete mismatch in talents among competing poker
players).
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Modeling poker outcomes is typically approached through Monte Carlo
studies. Such methods were used to identify profitable card-counting strate-
gies in blackjack; Thorp (1966) published one such strategy in Beat the
Dealer . However, once these winning strategies were publicized, the casi-
nos changed the game to their benefit by using multiple decks and/or having
dealers shuffle after every hand. Knowledgeable blackjack gamblers were
forced to devise new, less profitable betting schemes.

To evaluate poker skills, Fiedler and Rock (2009) developed the
critical repetition frequency (CRF) which is defined as the threshold of
repetitions at which a game becomes influenced predominantly by skill
rather than chance. They show that poker can be classified as a game
of skill, but emphasize that the results hold only for the sample under
study.

In light of recent online poker scandals, there are indications that poker
markets might not offer a level playing field. It seems as though there
is another major scandal on an almost weekly basis in the world of poker
(POKER-KING.com). As such, our commentaries on modeling in the sports
gambling markets are divorced completely from commentaries on the poker
and card game markets.

Given the evolutionary mechanisms that underlie the financial and sports
gambling markets, sports hedge funds are likely in the offing—if they do
not already exist opaquely. Dallas Mavericks’ owner Mark Cuban proposed
the establishment of hedge funds that would invest in the sports gambling
markets with professional gamblers as portfolio managers. Although Cuban
was apparently pressured to abandon his hedge fund idea, he remains no
less adamant about his view that investing in the stock market is riskier
and less transparent than plunking down money on the Cowboys versus
the Steelers (Forbes.com). For societies that impose obstacles to gambling,
financial markets serve the function of the gambling casino. As such, the
entry of regulated sports hedge funds in the United States is seemingly
inevitable.

Somewhere in a remote part of southern England, during a quiet Friday
lunchtime, a man places a £30 bet on his computer on ice hockey matches
in Switzerland, Slovenia, Russia and Germany. He bets that the matches will
average more than five-and-a-half goals a game and stands to make a few hun-
dred pounds. Moments later, in the London headquarters of Ladbrokes, the
bet is processed. It is one of about 150,000 online transactions that Britain’s
biggest land-based bookmaker will undertake that day. . . . According to the
Isle of Man–based Global Betting and Gaming Consultants, gambling around
the world generates $370bn in annual gross win—the amount retained by
operators after paying out winnings—with online gambling accounting for
$17bn of that. (Blitz, 2/4/09)
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2.4 GAMBLING MARKETS: PROHIBITION, REPEAL, AND
TAXATION

Prohibition by legislative fiat has an ignominious record. A late 19th-century
German experience foretold the failure of the Volstead Act, the genesis of
organized crime in the United States. In 1896, the Reichstag banned futures
trading in response to the depressed prices of German commodities. The
prohibition led to illegal speculation. Exports became excessive in order to
capitalize on world prices. In turn, exports had to be made up by imports,
at a heavy cost to all Germans. Futures trading resumed in 1900. This
German failure has been regarded as positive proof . . . that economic law
[is] ultimately beyond legislative fiat (Cowling, 1965). In a similar vein,
repeal of the Volstead Act was for the purpose of gaining lucrative tax
revenues in the Depression era.

In 1963 President Kennedy helped revive the London bond market by imposing
a tax on US investment in foreign securities. That made the international
bond market move to London, allowing the City to regain its 19th century
status as Wall Street’s rival in capital markets.7 Now US regulators—through
anti-gambling laws—are doing the same thing with the online betting and
gambling markets, markets that are now flourishing in London. (Financial
Times, 8/23/05)

In October 2006, President Bush signed the Safe Port Act , a bill on coast
guard security. The Act contained a controversial provision, engineered
by then Senate majority leader Bill Frist, making it illegal for banks and
credit card firms to make payments to online gaming sites. The Act did
not affect Nevada’s brick-and-mortar casinos. Just prior to passage of the
Act, James Chanos (president of Kynikos Associates, the world’s largest
dedicated short-selling hedge fund, and best known for his prescient shorting
of Enron) shorted shares of the online gambling businesses Sportingbet
and World Gaming —backed by a large portion of his fund’s $3 billion
in assets. Hours following passage of the Act, shares in Sportingbet and
World Gaming plunged dramatically by 58% and 76%, respectively (see
Section 4.5).

7The debate about New York’s position relative to London has mostly been prompted by the
shift in companies choosing to raise money in London rather than on the New York Stock
Exchange or NASDAQ. The figures are stark: in 2006 , $55bn was raised on the London Stock
Exchange and the lightly-regulated Aim market. For the first time ever, this figure exceeded
the amount raised on the NYSE and NASDAQ, where share issues reached $47bn (Financial
Times , 1/20/07).
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The Kynikos Associates short selling turned into a financial killing com-
parable to that of George Soros, who, in 1992, shorted the British pound
and was the primary beneficiary, to the tune of $1 billion.8 Some analysts
have speculated that Chanos anticipated that Frist would attach the contro-
versial provision to the Safe Port Act and steer it successfully through the
Senate. At the time, Frist had presidential ambitions and wanted to show
his right-wing religious base that he opposed gambling.

The Frist provision, in effect, prohibited online gambling. Opponents
argue that the provision has little to do with gambling beliefs, but more
with false arguments circulated by parties threatened by the online gam-
bling industry . . . that it will be a costly mistake, politically and economically
and . . . that online gaming companies should be required to incorporate and
operate their businesses in the US . . . . Legalizing online gambling and reg-
ulating it would help establish an already thriving, high-tech global industry
in the US, attracting investment, retaining entrepreneurs and increasing
employment and tax revenues . . . . History has shown time and again that
prohibitions, rather than solving problems, cause more (Brenner and Turk,
10/5/06).

In 2007, Barney Frank, chairman of the House of Representatives finan-
cial services committee, announced plans to overturn the Frist amendment.
Frank maintained that attempts to make [online gambling] illegal smack of
a rightwing puritanical zeal that led to Prohibition in the 1920s and 1930s .
Nearly two years later, on 6/6/09, Frank introduced bills that would allow
licensed operators to run online poker games, casinos, lotteries, parimutuel
betting, and bingo. However, sports gambling was excluded to prevent pro-
fessional and college sports associations from opposing the bills.9

Given the need for Senate acquiescence—especially by Senate Majority
Leader Harry Reid (Nevada), who faced a difficult reelection campaign in
2010—Frank designed his bills to allow Nevada casino companies to take
bets from almost all other states while keeping out foreign competition
(Rose, 2009).

Laws are like sausages. It’s better not to see them made. (Otto von Bismark)

8Soros’s audacious bet against the British pound . . . stemmed from his savvy reading of
Britain’s economic malaise and a belief that, despite strong statement to the contrary,
Britain would abandon the Exchange Rate Mechanism rather that continually defend the
pound through repeated and expensive interventions in the currency markets (Business Week ,
8/23/93).
9The National Football League had teamed with the Christian right to oppose an earlier
proposal by Frank to undo the Frist amendment. Former U.S. Senator Alfonse D’Amato
stated that the NFL’s lobbying shows that they aren’t going to want anyone betting on their
games unless they can control it (Kirchgaessner, 8/14/07).
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Subsequently, NBA Commissioner David Stern bolstered both Senate
approval of Frank’s bills and Reid’s reelection chances. In a December
2009 interview, Stern said that the NBA may be nearing a point of con-
sidering supporting the legalization of gambling on sports. Stern said that
evolving public perceptions of gambling and the potential to increase rev-
enue could lead to a move to allow sports betting on league games. Stern
contradicted the main argument used by the NFL in leading the fight to
maintain the sports gambling ban set up by the 1992 Professional and Ama-
teur Sports Protection Act .10 While NFL representatives fiercely cling to the
theory that legal sports betting will lead to fixed games, Stern said illegal
gambling was just as dangerous . . . . The commissioner said that times have
changed since gambling was seen as an immorality. Noting the proliferation
of government involvement in lotteries and other generators of gaming rev-
enue, Stern admitted the decision may become merely a business (Burkhart,
12/11/09).

Amid the flux of proposed gaming legislation, state-owned lotteries and
online gaming continue to be at loggerheads. In September 2009, state-
owned lotteries across the European Union claimed “a great victory” in
their battle competition from Internet gaming sites at bay as European Court
of Justice gave its first ruling in the case involving the Austrian Inter-
net operator Bwi [one of Europe’s biggest Internet bookmakers] versus
the Portuguese state gambling monopoly. The Court said that EU states
should be allowed to restrict freedom to provide services in the gambling
area if there was an overwhelming public interest . . . . The EU Associa-
tion of State Lotteries welcomed the ruling and concluded that “National
governments can grant monopolies to state operations for gambling on the
internet and . . . ban foreign online gambling operators such as Bwin even if
they are based and licensed in another EU member state” (Tait and Blitz,
2/4/09).

2.5 QUANTIFYING THE MADNESS OF CROWDS IN SPORTS
GAMBLING MARKETS

We need a new science of macroeconomics. A science that starts from the
assumption that individuals have severe cognitive limitations; that they do

10Plans for the state of Delaware to begin taking sports bets (on 9/1/09 ) took a hit today
when a federal appeals court in Philadelphia ruled that the plans would violate the 1992
Sports and Amateur Protection Act that banned sports wagering. Delaware was one of four
states specifically exempted by the law because it previously offered a state sports-based
lottery, but the court apparently agreed with attorneys from the major sports leagues that the
state’s plan to accept single-game wagers on games was more than the exemption permitted
(GGB News , 8/24/09).
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not understand much about the complexities of the world in which they live.
This lack of understanding creates biased beliefs and collective movements
of euphoria when agents underestimate risk, followed by collective depres-
sion in which perceptions of risk are dramatically increased. These collec-
tive movements turn uncorrelated risks into highly correlated ones. What
Keynes called “animal spirits” are fundamental forces driving macroeco-
nomic fluctuations. . . . The basic error of modern economics is the belief that
the economy is simply the sum of microeconomic decisions of rational agents.
But the economy is more than that. The interactions of these decisions create
collective movements that are not visible at the micro level. It will remain diffi-
cult to model these collective movements. There is much resistance. Too many
macro-economists are attached to their models because they want to live in
the comfort of what they understand—the behavior of rational and superbly
informed individuals. To paraphrase Isaac Newton, macroeconomics can cal-
culate the motion of a lonely rational agent but not the madness of crowds.
Yet if macroeconomics wants to become relevant again, its practitioners will
have to start calculating this madness. It is going to be difficult, but that is no
excuse not to try. (DeGrauwe, 7/22/09)

How does one begin to measure the madness of crowds? One way is
to associate the crowd’s level of madness or sanity with their level of
irrationality or rationality (I/R) and then to measure I/R levels in terms of
the crowd’s expectations associated with a forthcoming micro event, such
as the line on a game. The question, then, is whether specific expectations
in the sports gambling markets are rational, irrational, or somewhere in
between.

Since a bookmaker’s lines are eventually determined collectively by
those betting on a game, we propose evaluating the crowd’s I/R level
in terms of the difference between the actual game outcome and the
bookmaker’s line—a known public line as opposed to, say, an unknown
rate of inflation that is expected by the public at some future time. We
term this difference a gambling shock (GS). In the sports gambling
markets, the modeling objective is to forecast the gambling shocks
effectively.

Definition 2.5.1: Gambling shock is a measure of the gambling public’s
level of irrationality/rationality. Let |GS | denote the absolute value of a
gambling shock and suppose that GS can be modeled effectively. Then
larger values of |GS | are indicative of increasing levels of irrationality,
whereas smaller values of |GS | are indicative of increasing levels of ratio-
nality. If GS is not predictable, the crowd’s I/R level is uncertain—in
the sense that nonpredictable GS may be due to unforeseen events that
accompany the course of a game and its outcome.
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Definition 2.5.2: Market efficiency and inefficiency. Increasing (decreas-
ing) levels of irrationality (rationality) are indicative of increasing (decreas-
ing) levels of market inefficiency (efficiency): The greater (less) the level
of market inefficiency, the greater (less) the likelihood of profitable model-
ing/forecasting rules and the more (less) predictable the value of GS .

2.6 STATISTICAL SHOCKS: ALIAS VARIABLES

Whereas a gambling shock is the difference between a game outcome and
the public line, a statistical shock is the difference between the outcome and
its expected value based on a statistical forecasting model. In the former
case, the public line is known, and in the latter case the expected value is
unknown and must be estimated. Thus, a forecasting model for, say, an NFL
game may contain both lagged gambling and statistical shocks, especially
when the lagged statistical shocks may reflect significant variables that are
not reflected by the lagged gambling shocks.

Lagged statistical shocks, known as moving average (MA) variables
in ARMA (autoregressive moving average) modeling and introduced
in Section 4.3, are critical in modeling price changes in financial
markets where there is no public line on an anticipated price change
and hence no gambling shocks. And as with gambling shocks, the
statistical shocks in financial markets are likely to reflect physiological–
psychological–sociological variables.

In a study of active traders at a London bank, testosterone and corti-
sol levels were monitored through saliva tests in 17 male traders for eight
consecutive days, during which time each trader recorded his profits and
losses. Given that past studies indicated that testosterone plays a role in
winning and losing and cortisol (a hormone with the opposite effect, of
dampening exuberance) plays a role in responding to stress and uncertainty,
the researchers hypothesized that these steroids would respond to financial
risk taking. The specific hypothesis was that testosterone would rise on
days when traders made an above-average gain in the markets, and cortisol
would rise on days when traders were stressed by an above-average loss . . . .
The study indicated that men with higher testosterone levels in the morning
made above-average profits during the day. Success raised testosterone lev-
els further, leading to higher confidence and greater risk-taking . . . . In the
short term, in a rising market, this feedback loop tends to have a positive
effect . . . . But other studies show that eventually the “winner effect” goes
too far and effective risk taking turns into dangerous behavior. Cortisol
rose in the traders as market volatility rose and profits and losses became
more variable. Chronic cortisol exposure . . . promotes feelings of anxiety,
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a selective recall of disturbing memories and a tendency to find danger
where none exists. Cortisol is likely to rise in a crash, make traders dra-
matically and perhaps irrationally risk-averse, and exaggerate the sell-off
(Coates, 4/15/08). Although this study showed that increasing testosterone
levels increase a trader’s appetite for risk, it did not answer the question of
whether testosterone was having beneficial effects by increasing the trader’s
skills.11

The latter question was addressed in a follow-on study and published in
PLos One on 11/25/09. Evaluating a trader’s skills in terms of his profit
and loss (P&L) may be misleading; that is, knowing that a trader made
$100 million says nothing about the skill involved unless we know the risk
involved (e.g., what if the trader could just as easily lost $500 million?).
Instead, trader skills can be evaluated in terms of the Sharpe ratio (SR;
Sharpe, 1994), which measures how well the return of an asset compensates
the investor for the risk taken. SR is the ratio of P&L to risk where risk
is measured by the standard deviation P&L [denoted sd(P&L)]. The higher
(lower) the risk, the lower (higher) the SR value. A trader making $100
million but having sd(P&L) = $500 million will have a low SR = 0.20,
whereas a trader making $100 million and having sd(P&L) = $100 million
will have an SR = 1.0.

The high-frequency male traders in the study group had an average SR =
1.02 between 2005 and 2007. This average was significantly higher than
their benchmark index, Germany’s Dax, which averaged 0.53. Although
testosterone levels did not have a significant effect on SR, it was found
that the a trader’s Sharpe ratios increased markedly with the number of
years they had traded . . . . Moreover, traders increased their Sharpe ratios
significantly during the two years of the study—indicating that they were

11The trader–testosterone phenomenon in finance has drawn analogies with the use of illicit
performance-enhancing drugs in sports. Should the sports officialdom enforce a ban on such
drugs? Or should sport open the door to enhancements that appear to be relatively innocuous?
Prohibiting them would be justified if they were not widely available, on the ground that there
is no point in adding to the unfairness in sport already created by differences in natural talent,
luck or wealth. A ban also can be supported simply on the basis that enhancements violate
the rules. But sports organizations should weigh the costs of enforcing the rules against the
impact of changing them to permit the use of safe enhancements. A ban against the use of
nitrogen tents may be futile, for example, since it may be next to impossible to develop tests to
determine if an athlete had done so. . . . Even in cases where accurate tests could be developed,
sport should consider letting the market decide whether relatively safe enhancements should
be permitted, especially if they are widely available and the costs of prohibiting them would
be substantial . For example, enough people enjoy watching or participating in power-lifting,
an offshoot of weightlifting that does not test competitors for enhancement drugs. The sport
has survived since the early 1960s. On the other hand, XFL football died when people refused
to watch it (Mehlman, 2005).



26 MARKET PERSPECTIVES: THROUGH A GLASS DARKLY

learning to make more money per unit of risk. Learning was encouraged
by the compensation scheme at the trading company where they worked
(Coates, 11/25/09). It would be of considerable interest to continue the
study with these traders over the long term to determine the extent to
which decreased testosterone levels with increasing age are compensated
by increased skills.

Media coverage of the earlier study recalled that in October 2007 a New
York hedge fund was sued by a trader who had allegedly been made to take
female hormones for behaving too aggressively . . . . Financial institutions
could do something to reduce the excesses of testosterone-fueled trading
without taking such extreme action. Financial trading is dominated by young
men. You could stabilize the markets by including more women and older men
who would be less susceptible to the testosterone feedback loop (Cookson,
4/15/08). Longitudinal studies are obviously in order to compare the Sharpe
ratios of younger male traders with those of women and older men.

Gambling shocks (Section 1.2) and related statistical shocks are probably
reflections (or aliases) of the physiological–psychological–sociological vari-
ables that come into play in studies that examine the effects of testosterone
and cortisol on trader performance.



3
Opacity and Present-Day

Dynamics

3.1 DILEMMAS BETWEEN SOCIAL AND ECONOMIC
EFFICIENCY

It is said that we live in a world shaped by capitalism. For three centuries it
has been argued that communal well-being—defined in terms of economic
and social efficiency—is best advanced through the enlightened self-interest
of capitalists.1

1In 2001, a conference was held in Bayonne, in southwestern France, celebrating the 200th
birthday of Frederic Bastiat (1801–1850), a pioneer of free market capitalism. Through his
writings and speeches, and as a member of the French Chamber of Deputies, Bastiat fought
valiantly against the protectionism and socialism of his time. His weapons were wit and satire;
his weapons were reducto and absurdum. . . . Despite the publication of Adam Smith’s “The
Wealth of Nations,” decades earlier, Bastiat was still fighting the mercantilist view of exports
as good and imports as bad. He pointed out that under this view, the ideal situation would
be for a ship loaded with exports to sink at sea. One nation gets the benefit of exporting and
no nation has to bear the burden of importing . . . . The most famous example of Bastiat’s
satire was his petition to the French parliament on behalf of candle makers and related
industries. He was seeking relief from “ruinous competition of a foreign rival who works
under conditions so far superior to our own for the protection of light that he is flooding the
domestic market with it at an incredibly low price.” The foreign rival was the sun. The relief
sought was to a law requiring the closing of all blinds to shut out sunlight and stimulate the
domestic candle industry . . . . Bastiat stressed that because we have limited resources and
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It is not from the benevolence of the butcher, the brewer, or the baker, that
we expect our dinner, but from their regard to their own interest. We address
ourselves, not to their humanity but to their self-love, and never talk to them
of our own necessities but of their advantages. Nobody but a beggar chuses
to depend chiefly upon the benevolence of his fellow-citizens. (Adam Smith,
Wealth of Nations)

Smith’s commentary was intended to distinguish between mutually
rewarding commercial exchanges and the pursuit of self-interest outside a
framework of cooperation and regulation. Smith wrote further: Monkeys
when they rob a garden throw the fruit from one to another till they deposit
it in the hoard, but there is always a scramble about the division of the
booty, and usually some of them are killed . Smith might have been talking
about bonus time at an investment bank (Kay, 2/25/09).

Effective cultural pluralism (defined as effective social efficiency) is said
to be the embodiment of capitalism (defined as effective economic effi-
ciency).

Come to the London Exchange, a place more respectable than many a court.
You will see assembled representatives of every nation for the betterment
of mankind. Here the Jew, the Mohametan and the Christian deal with one
another as if they were of the same religion, and reserve the name “infidel” for
those who go bankrupt. Here the Presbyterian puts his trust in the Anabaptist,
and the Anglican accepts the Quaker’s promissory note. Upon leaving these
peaceful and free assemblies, one goes to the synagogue, the other for a drink;
yet another goes to have himself baptized in a large tub in the name of the
Father through the Son to the Holy Ghost; another has his son’s foreskin cut
off, and over the infant he has muttered some Hebrew words that he doesn’t
understand at all. Some others go to their church to await divine inspiration
with their hat on their head. And all are content. (Voltaire: On his visit to the
London Exchange in 1651)

In light of recent corporate scandals (e.g., Enron, WorldCom), the sub-
prime mortgage crisis, and Ponzi schemes, obvious dilemmas exist between
economic and social efficiency. Prowse (6/16/02) notes that economists
typically assume that individuals, rational or irrational, are self interested
but honest . They regard people as personal utility maximizers who take
whatever steps they can to promote their own welfare and accept limits to

1(Continued) unlimited wants, it’s foolish to contrive inefficiencies just to create jobs.
Progress comes from reducing the work need to produce, not increasing it. Yet, a day doesn’t
pass that we don’t hear of some proposal to “create jobs,” as if there’s no work to be done
otherwise. If it’s jobs we want, let’s just replace all bulldozers with shovels. If we want even
more work, replace shovels with spoons. Bastiat suggested working only with our left hand
(McTeer, 7/5/01).
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their maximizing behavior ; i.e., they try to get rich while obeying the law
and without cheating or deceiving others . The dilemma is that true utility
maximization is not consistent with behavior that respects social norms and
rules. If taken to its logical limits, it naturally turns into wholly opportunistic
behavior. After all, if I regard my goal in life as to promote my own per-
sonal interests, and if I am logical, I should lie, steal and cheat whenever
I calculate that the likely gains will outweigh the likely losses. In other words,
I should deceive others and break the law whenever I expect to get away
with it. The true utility maximizer is wholly immoral. In extending the role of
markets and in promoting market-style incentives even in the public sector,
policy makers are thus inadvertently helping to destroy moral fabric built
up over generations. In domain after domain, they are instructing people to
act “economically”—in other words to put self interest ahead of everything
else. The sad reality is that an economic orientation in which morality has
no place has become, for many, a total philosophy of life. And it has become
so with the blessing of our political leaders. We must accept, in short, that
economic efficiency is not equivalent to social efficiency, and that one can
rely too much, as well as too little, on markets .

There is an adage that 10% of the people are completely honest, 10%
are completely dishonest, and 80% are somewhere in between. Toward
promoting greater social efficiency, it has been suggested that remedial
actions should distinguish between changing the mindset of the quasi-utility
maximizers (the potentially dangerous 80%) and chasing after the true utility
maximizers (the bad minority) with a bigger stick.

3.2 TOWARD A MORE VISIBLE HIDDEN HAND

The efficient market hypothesis has roots in Adam Smith’s metaphor of
the invisible hand of the market, which reconciled supply and demand and
brought about economic well being without the visible hand of government.
Interest in Smith’s work increased when Fredrich von Hayek claimed Smith
as one of the precursors of spontaneous order, the notion that social insti-
tutions come into being without deliberate human intention and function
without comprehensive planning and design.

From the time of Hume and Adam Smith, the effect of every attempt to under-
stand economic phenomena—that is to say, of every theoretical analysis—has
been to show that, in large part, the coordination of individual efforts in soci-
ety is not the product of deliberate planning, but has been brought about . . . by
means which nobody wanted or understood, and which in isolation might be
regarded as some of the most objectionable features of the system. It showed
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that changes implied, and made necessary, by changes in our wishes, or in the
available means, were brought about without anyone realizing their necessity.
In short, it showed that an immensely complicated mechanism existed, worked
and solved problems, frequently by means which proved to be the only pos-
sible means by which the result could be accomplished but which could not
possibly be the result of deliberate regulation, because nobody understood
them. (Frederick von Hayek; see C. Smith, 2006)

Given the aftermath of financial deregulation in the late 1990s and inno-
vations under the guise of efficient markets, indications are that Keynes’
demand management , a visible government fist in the world financial sys-
tem, is replacing Smith’s invisible hand and that Hayek’s spontaneous order
is facing an unprecedented regulatory backlash (Tett et al., 10/10/08).

In light of the recent financial crisis, Wadhwani (12/17/08) provides the
following commentary on policy mistakes by central bankers due to imple-
mentations of the EMH and its hidden hand. In recent years, many countries
made their central banks independent and these typically run by economists
whose policy mistakes were influenced by their belief in the EMH. While
bubbles were formed over the last decade, it was frequently argued that
central bankers had neither more information nor greater expertise in valu-
ing an asset than private market participants. This was often one of the
primary explanations for central banks not attempting to “lean against the
wind” with respect to emerging bubbles . . . . It is likely that had central banks
raised interest rate by more than was justified by a fixed-horizon inflation
target while house prices were rising above most conventional valuation
measures, the size of the bubble would have been smaller . . . . Once the bub-
bles burst in 2007, some central banks were surprisingly slow to cut interest
rates. . . a policy mistake that may well lead the current recession to be
longer and deeper than it might have been . . . . One reason for their reluc-
tance to cut interest rates was the significant rise in commodity prices. In
relying on the EMH yet again, policymakers used longer-dated futures prices
for these commodities in preparing their inflation projections. Their failure
to allow for the possibility that a “bubble” had developed in the commod-
ity markets. . . led them to significantly overestimate prospective inflationary
pressures .

Without attempting to analyze the complex financial instruments that
unraveled so catastrophically, Atwood (2008) provides a summary of the
subprime mortgage crisis. Some large financial institutions peddled mort-
gages to people who could not possible pay the monthly rates and then
put this snake-oil debt into cardboard boxes with impressive labels on them
and sold them to institutions and hedge funds that thought they were worth
something . Atwood makes reference to Samuel Johnson’s remarks on the
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efficacy of debtors’ prisons: We have now imprisoned one generation of
debtors after another but we do not find that their numbers lessen. We have
now learned that rashness and imprudence will not be deterred from taking
credit: let us try whether fraud and avarice may be more easily restrained
from giving it .

Regarding the subprime mortgage crisis, another Samuel Johnson com-
mentary is particularly appropriate.

Those who made the laws have apparently supposed, that every deficiency of
payment is the crime of the debtor. But the truth is, that the creditor always
shares the act, and often more than shares the guilt, of improper trust. It
seldom happens that any man imprisons another but for debts which he suf-
fered to be contracted in hope of advantage to himself, and for bargains in
which proportioned his own profit to his own opinion of the hazard; and there
is no reason, why one should punish the other for a contract in which both
concurred. (Samuel Johnson, Idler 22, September 16, 1758)

3.3 HEDGE FUNDS, GALAPÁGOS, AND EVOLUTION

Recounting the adaptive market hypothesis, periods of relative market sta-
bility and incremental change are followed by periods of intense change
as participants evolve to take account of new realities. Applications of the
evolutionary principles to the markets have led to analogies between the
markets and Galápagos.

During his visit to the Galápagos Islands in 1835, Darwin recorded obser-
vations on finch varieties with different-shaped beaks scattered across the
archipelago’s some 100 islands—islands with differing ecosystems. The
observations provided him with a cross-sectional view of evolution that
enabled him to develop his theory of natural selection.

By analogy, it has been said that regulatory body environs correspond to
the islands, while market participants—hedge funds, mutual funds, private
equity funds, sovereign wealth funds, investment banks, etc.—correspond
to the islands’ incumbent species. Hedge funds, hitherto subject to very
limited government regulation, are analogous to occupants of islands with
few predators and a friendly ecosystem. Such islands became experimental
laboratories for testing moneymaking ideas. In contrast, the highly reg-
ulated mutual funds are analogous to occupants of islands with many
predators.

Unlike mutual funds that are limited to long-only positions and that
sustained severe losses following the bursting of the Internet bubble, hedge
funds can short stocks or commodities to profit from price declines. Hedge
funds can also leverage. A trade that makes not even 1% is worth doing if
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you can borrow enough money to make the same trade 10 times. And they
can limit withdrawals by investors, allowing them more flexibility than funds
that must be prepared for redemptions every day .

The 2007–2008 market disequilibrium was an example of intense
change, especially for the hedge funds, a change that reflects Gould’s
punctuated equilibrium (see Section 4.3). In July 2008 hedge funds started
to lose money and then lost it in a big way the following September.
The end of September gave hedge fund investors one of their periodic
opportunities to remove money . (Estimates of withdrawals ranged from
$31 billion to $43 billion, while investment losses reduced hedge fund
assets by $210 billion.) Meanwhile, the Lehman Brothers bankruptcy
in mid-September prompted a sudden increase in the price of leverage
as investments on whom hedge funds rely for their short term funding
applied much tighter restrictions. Then came the ban on shorting financial
stocks and all the hedge funds’ critical evolutionary advantages had
been removed. Leverage, it appears, was vital to the eco-system of the
Galápagos . . . . The removal of leverage may not administer the same shock
to hedge funds as the asteroid that eliminated the dinosaurs, but they now
face a new phase of evolution—in a far more hostile environment (Authers,
10/18/08).

3.4 LOTTERIES: MARKET FOR LOSERS

The art of taxation consists in so plucking the goose as to obtain the largest
number of feathers with the least possible amount of hissing. (Jean-Baptiste
Colbert, Chief Minister of Louis XIV2)

Following Colbert’s wisdom, governments established lottery markets—a
form of stealth taxation (Brittan, 11/25/99)—as a tax on stupidity (Brooks,
6/10/08). Lottery markets are a means of establishing the process of creative
destructive benevolence. Lotteries generate needed government revenues
largely at the expense of those who can least afford the tax and thus become
a destructive force on segments of society. Then, in its benevolence, the
government encourages rehabilitation programs for those succumbing to the
destructive force of the lotteries. Colbert would argue that the lottery process

2Colbert, described as a sustained polemic, espoused protection in external economic policy
and detailed regulation at home. But Colbert was also a successful conventional finance
minister. The combination of dirigisme with the search for sound finance is familiar to students
of present day French policy. Colbert was distinguished from contemporaries not by any
originality in his opinions but because he had success in enforcing them (The New Palgrave
Dictionary Online).
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has greater benefit than no lottery process. After all, vast government rev-
enues are generated for the benefit of its citizens, while jobs are created by
the rehabilitation programs to ameliorate the effects of the destructive force
of lotteries.

Whether through naivety or self-serving interests, sports gambling mar-
kets have been linked erroneously to lotteries. As discussed earlier, player
success in sports gambling markets requires skills, whereas lottery outcomes
are independent of player skills. The independence of outcomes and player
skills and the minute probabilities of winning lotteries assure large profits
for agencies sponsoring the lotteries. For government lotteries, the take is
roughly 67 to 75% of the total amount bet. Those who play the lottery have
been described as irrational, hapless fools.3

When gasoline prices shot up in 2008, Peggy S. thought about saving the $10
she spends weekly on lottery tickets. . . . But the prospect that the $10 could
become $100 million or more was too appealing. So rather than stop buying
Mega Millions tickets. . . she saved money instead by packing her lunch a few
days a week, keeping alive her dreams of hitting a jackpot and retiring as a
multimillionaire. (Zezima, 9/13/08)

In October 2005, the Ohio Lottery will attempt to combat falling tickets sales
by introducing a new game that offers a lower jackpot but a higher probability
of winning. . . . For lottery operators. . . the 18–25 year-old demographic has
been a key target market. . . . The odds of winning the new Ohio game will
be 6 million to 1, compared with 14 million to 1 odds of winning the current
Super Lotto Plus. . . . The quest is to persuade youth to overlook the odds. (As
reported by G. Malkani in the Financial Times, 9/13/05)

In a 2009 voter initiative, California Governor Arnold Schwarzenegger
proposed a major expansion in the existing state lottery. The California Lot-
tery is replacing its “Big Spin” television game. . . with “Make Me a Million-
aire” (Lawrence, 1/16/09). In his State of the State address, Schwarzenegger
stated that our state is incapacitated until we address the budget crisis . The
“Big Spin” was intended to address the crisis. The initiative was rejected
decisively by the voters.

3George Bernard Shaw’s assessment of gambling, though misguided in general terms, is
appropriate in reference to the lottery and slot machine players. Gambling . . . is a vice
which is essentially . . . ruinous. In extreme cases it is a madness which persons of the highest
intelligence are unable to resist: they will stake all they possess though they know that the
chances are against them. When they have beggared themselves in a half an hour or half a
minute, they sit wondering at the folly of people who are doing the same thing, and at their
own folly in having done it themselves (George Bernard Shaw, The Vice of Gambling and
the Virtue of Insurance).
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A report by the Institute of American Values (IAV, 2008) and other con-
tributing think tanks documents the deterioration of financial mores in the
United States, a transformation that has led to a stark financial polarization.
The report contrasts the investor class with the lottery class, the former with
tax-deferred savings and financial advisors and the latter with little access to
401k’s or financial planning, but plenty of access to payday lenders, credit
cards, and lotteries. The agents of destruction are said to include many gov-
ernment agencies, including the Congress, the White House, Wall Street,
and state governments. It is estimated that 20% of Americans are frequent
lottery players, spending $60 billion a year. The spending is starkly regres-
sive. A household with an income under $13,000 spends, on average, $645
a year on lottery tickets, about 9% of all income (Brooks, 6/10/08).

The IAV report includes the following recommendations:

1. Raise public consciousness about debt the way that antismoking
activists did with their campaign.

2. Create institutions that encourage thrift.
3. Have foundations and churches issue short-term loans to cut into pay-

day lenders’ business.
4. Establish programs that give the poor and middle class access to

financial planners.

In marked contrast to the IAV recommendations, Groz (2006) proposes
increasing lottery tickets sales through no-loss lotteries . Under this scheme,
30 cents out of every dollar in ticket sales is set aside into a special account
for the benefit of the lottery player and never put at risk in the game. It is
assumed that this money is placed into a long-term investment account with
an average rate of return of 10% yearly. The remaining 70 cents is divided
as usual among the prize pool, money raised for education or other socially
useful purpose, and administrative costs . . . . Ticket sales could double or
triple as players begin to realize that they’re saving or investing every time
the play. This would translate to greater revenues and bigger prize pools
than existing lotteries . Methods of tracking the amount wagered by player
participants include smart cards, cell phones, and eventually by biometric
sensors used to identify and authenticate individuals.

Aside from the questionable average yearly rate of return 10% , the Groz
proposal would probably expand the lottery class and deepen its quagmire.
On the other hand, recommendations in the IAV report are deficient in that
they do not directly address the root causes of the financial polarization.
By any measure, education is the ultimate poverty eradicator and financial
literacy is one of the major educational challenges facing the United States
today (see Chapter 12).



4
Adaptive Modeling

Concepts in Dynamic
Markets

4.1 QUANT FUNDS AND ALGORITHMIC TRADING

Algorithmic trading—the use of quantitative (quant ) rules to finesse trade
execution—is widely used by hedge funds, pension funds, mutual funds,
and other institutional traders.1 Large trades are divided into several smaller
trades in order to manage market impact, opportunity cost, and risk. It may
be used in any investment strategy, including market making, intermar-
ket spreading, arbitrage, or pure speculation. The investment decision and
implementation may be augmented at any stage with algorithmic support
or may operate completely automatically. Dramatic price swings in the
final hour of trading sessions are a sign of computer-driven quant activity
(Gangahar, 3/30/09).

Hedge funds and similar traders use algorithmic trading to make decisions
to initiate orders based on information that is received electronically, before
human traders are even aware of the information. In algorithmic or flash
trading , trades are executed in a few thousands of a second. High-frequency
traders often issue and then cancel orders almost simultaneously and get
an early peek at how others are trading. On 9/17/09, the Securities and

1For a pure quant fund, the decision to execute the order is made by the model. For non-pure
quant funds, the fund manager incorporates both quant modeling and human judgment.
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Exchange Commission (SEC ) proposed banning flash orders .2 Proponents
of [flash trading] argue that such trading enhances the liquidity and effi-
ciency of the markets (Anderson, 9/18/09).

Of particular concern to SEC regulators is the naked sponsored access,
whereby a high-frequency trader’s activities are not monitored in real time
by the sponsoring broker . (Estimates are that naked access comprises about
half of U.S. daily share turnover as of early 2010.) People familiar with the
SEC’s discussions say the regulator will likely propose eliminating naked
access and require broker-dealers to take steps to prevent erroneous trading
and check that investors do not breach credit and capital limits (Mackenzie
and Chung, 1/13/10).

During the 2007–2008 crises, many quant funds reported steep losses.
[Very quickly, however, the loss cycle was subsequently reversed. By
August 2009, hedge funds had made their best start to a year in a decade
(Jones, 8/13/09).] Several explanations have been given for the quant
losses in 2007–2008.

1. Parsimonious forecasting models are inevitably doomed. (Economics
is not a natural science but, rather, a science of human behavior.)

2. Quant funds have failed to incorporate in their model development
recent advances from allied sciences, particularly in terms of
incorporating biological–psychological–sociological variables in
models that adapt to dynamic market conditions. Quite apart from
the biological–psychological–sociological variables, the weather is
known to have a dominant effect on the price of produce such as
sugar and cocoa and crops such as wheat and corn. Meteorologists
are thus in great demand by hedge funds and investment banks. For
agricultural commodities, weather research is now as important as
research on consumer trends (Blas, 8/28/09).

3. With so few people qualified in effective quant modeling, competing
firms lure these individuals, who then use the same strategies in the
same markets and chase the same money once they depart.

4. Computer programs based on proprietary modeling used in daily
decision-making are known as black box investment . Users of the
system need not know or understand black box contents—contents

2In the protracted debate over how to reform our accident-prone financial system, little
has been said on the cost of running the system. For years, much of the best young talent
in the western world has gone to private financial firms. Perversely, the largest individual
returns seem to flow to those whose job is to ensure that microscopically small deviations from
asset price relationships persist for only one millisecond instead of three. These talented and
energetic young citizens could surely be doing something more useful (Friedman, 8/27/09).



4.1 QUANT FUNDS AND ALGORITHMIC TRADING 37

that have short shelf lives. Given such obsolescence, especially in
the absence of adaptive-type drift modeling, black box output may
quickly become worthless.

5. Forecasts based on publicly available information cannot compete
with the certainties of insider trading. Analyses of the UK Financial
Service Authority in 2008 suggested that large scale cheating takes
place between and within big institutions: 28.7% of all takeovers were
preceded by suspect trading .

In Section 5.3, recent cases of insider trading are summarized in terms of
candlestick charts that depict price movements during the trading periods in
question. But perhaps the most telling commentary on insider trading was
provided by Bernard Madoff, who brazenly asserted that it was impossible
for [an insider trading] violation to go undetected, certainly not for a consid-
erable period of time because of regulatory safeguards. He added, however,
that this was something that the public doesn’t understand. If you read things
in the newspaper and you see someone violate a rule, you say “Well, they’re
always doing this” (Chung, 12/15/08). This is the same Bernard Madoff
who was later convicted of having perpetuated the greatest Ponzi scheme
in history and sentenced to 150 years in prison. The size of Madoff’s fraud,
estimated to be $65 billion, dwarfs all other frauds.

The cancer continued to metastasize. One week following the Madoff
revelation, charges of alleged fraud continued but on a far less grandiose
level. Former Lehman Brothers executive Matthew Devlin was charged
with misappropriating material nonpublic information concerning at least
13 acquisitions or attempted acquisitions based on information from his
unsuspecting wife, a partner in a public relations firm involved in acqui-
sitions. Trading on those tips, he and others involved in the scheme made
more than a paltry $4.8 million in profits from at least March 2004 to
July 2008. The lawyer for Devlin’s wife said: She was completely unaware
that confidential information about her job was being used as the basis for
security trading (Chung, 12/15/08).

Faulty model forecasts are largely due to erroneous modeling assump-
tions that should have been revealed through model validation procedures.
The Black–Scholes model, developed in 1973 to price options and still
used extensively, assumes that present prices are independent of past prices
and that the probability of extreme price changes is negligible. Twenty
years ago, unwarranted use of the [Black–Scholes] model spiraled into the
worldwide October 1987 crash; the Dow Jones index dropped 23% in a sin-
gle day, dwarfing recent market hiccups. Ironically, it was the very use of a
crash-free model that helped to trigger a crash (Bouchaud, 2008).
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Under the modeling mantra of parsimony, it is assumed that [economic
behavior] exists just as electricity or gravitation exists and that it is capable
of analysis in much the same way (Spengler, 1932). In fact, it is foolish
to suppose that simplistic modeling of complex economic/human behavior
would lead to anything but nonviable forecasting. Aside from the natural
sciences, nothing good can come out of the principle of Occam’s razor3

as applied to market forecasts: Hypotheses and models: Cut’em thin . (com-
mentary by W.G. Cochran in the late 1950s in praise of R.A. Fisher).

4.2 MARKET VOLATILITY AND FAT-TAILED DISTRIBUTIONS

Regarding the impact of market volatility on price changes, irrational behav-
ior has been exacerbated by the defining trend of our time—increasing
volatility. When markets become volatile, the last price quoted for a secu-
rity is indicative of next to nothing (Kaufman, 2001). It has long been
recognized that asset returns exhibit positive sample excess kurtosis or fol-
low fat-tailed distributions, such as power law distributions (Clauset et al.,
2009). This means that extreme market volatility—usually described as
market anomalies—occurs more frequently than would be expected under
the assumption of bell-shaped curves such as a normal distribution.4

Applications resulting in fat-tailed distributions motivated the deriva-
tion of extreme value distributions (Coles, 2001) that date back to R.A.
Fisher. At a later date, Mandelbrot and Hudson (2004) took note of fat-tailed
anomalies in the financial markets. In Figure 4.2.1 Mandlebrot and Taleb
(3/24/06) demonstrate the effects of extreme price movements on earnings.
[The extreme price movements in this figure are indicative of Gould’s punc-
tuated equilibrium that is used to characterize the abrupt model drift (see
Section 4.3).] And with reference to Figure 4.2.1, Mandlebrot and Taleb
make the following statement. Any attempts to refine the tools of modern
portfolio theory by relaxing the bell curve assumptions, or by “fudging” and
adding occasional “jumps” will not be sufficient. We live in a world primar-
ily driven by random jumps, and tools designed for random walks address the

3This principle states that the explanation of any phenomenon should make as few assump-
tions as possible and eliminate those that make no difference in the observable predictions
of the explanatory hypothesis or model. The principle is often expressed in Latin as the lex
parsimoniae (law of parsimony).
4Regarding descriptions of price changes in terms of the normal-type distributions, perhaps
the discussion should start with the assumption that the variance of a price change is propor-
tional to the price change; that is, the greater the price change, the greater its variance and
hence the greater the risk. This assumption is addressed in terms of GARCH-type modeling
of volatility introduced in Section 4.4.
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mere anomalies.

Figure 4.2.1 A focus on the exceptions that prove the rule. (Source: Mandlebrot and Taleb,
3/24/06)

wrong problem. It would be like tinkering with models of gases in an attempt
to characterize them as solids and call them “a good approximation.”

Mandelbrot–Taleb reasoning is in conflict with the basic tenets of sta-
tistical time series modeling. Specifically, when a particular model is iden-
tified and then estimated for purposes of forecasting future price changes,
what matters is not the observed distribution of prices changes but, rather,
(1) the distributional properties of the residuals associated with the esti-
mated model and (2) the volatility associated with the residuals. Objectives
of adaptive drift modeling are to build effective forecasting models for both
price changes and volatility. For the markets under study, conventional mod-
eling in terms of nondynamic, first-order ARMA-type processes typically
lead to ineffective forecasting models and/or to conclusions of random walk.

The term volatility is typically defined as the rate and magnitude of
price changes. The market VIX Index , also known as the fear index , is a
popular measure of implied volatility. The VIX Index is a forward-looking
measure of S&P 500 volatility. Implied volatility, a forward-looking
measure, is the market price of an option based on an option pricing model.
In contrast to implied volatility, historical volatility is based on the past
prices of a security.

When the market is calm and trading is in a moderate trading range,
volatility is typically described as low. During these periods—which reflect
complacency or of lack of fear—call option buying is generally greater than
put option buying. However, when prices drop sharply, investor anxiety
increases and traders rush to buy puts, which increases the price of put
options and consequently increases the value of the VIX Index. Since 2003,
the VIX value has been based on S&P 500 option series.
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Figure 4.2.2 demonstrates the divergence in percent changes between
the VIX and the S&P 500 (GSPC) Indexes from April through Septem-
ber 2009, a period following the March 2009 nadir (see Section 9.10).
Figure 4.2.3 demonstrates the divergence between the VIX Index and the
Dow Jones Index following the collapse of Lehman Brothers on Septem-
ber 15, 2008. Figure 4.2.4, an alternative presentation of Figure 4.2.3, is
given in terms of a daily candlestick chart for price changes with moving
averages.

Figure 4.2.2 Relative changes in the S&P 500 and VIX Indexes following the March 2009 nadir.

Figure 4.2.3 Daily candlestick chart for VIX, the fear index, including the relative change in the
DJI Index following the collapse of Lehman Brothers.
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Figure 4.2.4 Daily candlestick chart for VIX, including the relative change in the DJI Index
following the collapse of Lehman Brothers.

4.3 ADAPTIVE ARMA(1, 1) DRIFT PROCESSES

Let D(t) denote a price change over the fixed time interval [t − 1, t],
where t can be defined in terms of, say, hours, days weeks, or months. In
the context of sports, D(t) may denote the winning/losing margin in game t
for a particular team. Disregarding effects of covariates (such as the line on
a game in the sports gambling markets), suppose that that D(t) is generated
by the time-varying ARMA(1, 1) process:

D(t) = α(t)D(t − 1) + γ(t)ε(t − 1) + ε(t), (4.3.1)

where α(t) and γ(t) denote, respectively, time-varying coefficients of AR(1)
and MA(1) variables, and ε(t) denotes the model error (or contemporane-
ous statistical shock). When the interaction between D(t − 1) and ε(t − 1)

affects D(t) directly, the following bilinear process (Granger and Anderson,
1978) may be conjectured to generate D(t):

D(t) = α(t)D(t − 1) + γ(t)ε(t − 1) + α1(t)D(t − 1)ε(t − 1) + ε(t).
(4.3.2)

One approach to dynamic modeling assumes that α(t) and γ(t) in (4.3.1)
are generated by random walk (West and Harrison, 1997):

α(t) = α(t − 1) + δ∗
α(t),

γ(t) = γ(t − 1) + δ∗
γ(t). (4.3.3)
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The vector of model errors δ∗(t) = (δ∗
α(t), δ

∗
γ(t))

′ is assumed normally
distributed with E (δ∗(t)) = 0 and E (δ∗(t)δ∗(t)′) = Vδ∗(t); that is,

δ∗(t) : normal(0, Vδ∗(t)). (4.3.4)

The assumption of a possible time-varying variance–covariance structure
allows for the time-varying volatility and the estimation of GARCH pro-
cesses (see Section 4.4).

An alternative dynamic modeling approach is to assume that each
coefficient in (4.3.1) is generated by an MA process; that is, for the
markets under study, changes in the coefficients at time t are the result
of unforeseen shocks occurring at time t − 1 (and earlier times for more
general models). In fact, for the sports gambling markets, the applications
will clearly demonstrate that lagged gambling shocks are instrumental in
affecting coefficient changes.

Accordingly, our working hypothesis is that coefficients are generated
by lagged shocks, the magnitude of which may alter the structure of model
(4.3.1): for example,

α(t) = α + α1ε
∗(t − 1) + δα(t),

γ(t) = γ + γ1ε
∗(t − 1) + δγ(t). (4.3.5)

For gradual adaptive mean drift , coefficient changes tend to be incremental
such that

ε∗(t − 1) = ε(t − 1). (4.3.6)

For abrupt adaptive mean drift ,

ε∗(t − 1) = ε(t − 1) + ξv(t − 1) if |ε(t − 1)| is sufficiently large,
(4.3.7)

where ξ denotes the effect of v(t − 1), a covariate associated with the pro-
cess whose effect becomes significant in the particular abrupt drift scenario;
v(t − 1) may or may not retain its significance for an indefinite period of
time. The vector of model errors, δ(t) = (δα(t), δγ(t))′ is assumed to have
a time-varying variance–covariance structure as in (4.3.4).

Substituting expressions for α(t) and γ(t) in (4.3.5) into (4.3.1), we have
a reduced, second-order ARMA(1, 1) model:

D(t) = αD(t − 1) + γε(t − 1) + α1D(t − 1)ε∗(t − 1)

+ γ1ε
∗(t − 1)ε(t − 1) + εR(t), (4.3.8)
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where εR(t) denotes the reduced model error. Notice that for abrupt drift
scenarios, the predictor variables in the reduced model may change from
one time to the next (in the sense that the significance or nonsignificance
of predictors may change as the model is updated from one time to the
next). Note also that lagged first and second moments affect subsequent
first moments, indicating the existence of an interactive feedback between
the first and second moments.

For γ1 = 0, (4.3.8) takes the form of a bilinear process. Model (4.3.8)
is not invertible when γ1 �= 0 (Granger and Anderson, 1978). However,
estimation biases resulting from the noninvertibility condition may be incon-
sequential if the fitted reduced model provides effective forecasts. Note that
(4.3.8) could have resulted from a variety of time-varying coefficient models
and not necessarily (4.3.5). When model structure for time-varying coef-
ficients is of specific interest, the validity of equations in (4.3.5) can be
evaluated by fitting each equation to the data for successive values of t
(where each fitting is within prespecified time windows). The fitting of
(4.3.5) is also necessary for purposes of estimating prior distributions of
reduced model coefficients when applying empirical Bayesian estimation.

A complication associated with abrupt drift scenarios is that large val-
ues of |ε(t − 1)| may disrupt model structure to the extent that forecasts
are temporarily unreliable. In such cases, risk management considerations
suggest that (1) forecasting decisions should be delayed or altered until the
model stabilizes in terms of gradual or more moderate abrupt drift5 and/or
that (2) greater emphasis should be placed on a volatility modeling forecast,
as discussed in Section 4.4.

Abrupt shocks disrupted the model structure in a study that reported a
significant negative relation between the performances of commodities and
equities. Gorton and Rouwenhorst (2004)6 constructed an equally weighted
index of commodity futures monthly returns from July 1949 to March
2004. Their purpose was to study simple properties of commodity futures
as an asset class. Commodity returns were found to be negatively correlated

5At an earlier date, Forrester (1971) provided a prescient connection between model desta-
bilization and evolution. He argued that evolutionary processes have not given us the mental
skill needed to interpret properly the dynamic behavior of the systems of which we have
now become a part and that the behavior of complex systems is counterintuitive. In many
instances it emerges that the known policies describe a system that actually causes the trou-
bles. In fact, a downward spiral develops in which the presumed solution makes the difficulty
worse and thereby causes redoubling of the presumed solution.
6The paper by Gorton and Rouwenhorst, “Facts and Fantasies About Commodity Markets,”
was published while the authors were consultants to AIG Financial Products, the insur-
ance company subsidiary better known for its fateful push into credit default swaps (Meyer,
2/10/10).
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with equity and bond returns, a relation due in significant part to different
behavior over the business cycle. Performances of commodities were said
to work well when they are needed most : when stock market returns are
disappointing.

The authors’ view was embraced en mass by institutional investors
and helped transform commodities from a niche investment into a proper
standalone asset class . . . . But the diversification benefits of commodities
[became] increasingly tenuous as prices in the years following [publication
of the finding] moved in tandem with other major asset classes, including
equities and bonds. As stock markets plummeted worldwide in 2008,
commodities fared just as badly . The theory that commodities and
equities respond to different phases of the business cycle was obviously
challenged when both bottomed during the March 2009 nadir. These
negative correlations have proved nasty for investor, such as pension
funds, that piled into commodities as a way to broaden portfolios and
spread risk (Meyer, 2/10/10). A reanalysis of the data used by Gorton and
Rouwenhorst is necessary to determine whether coefficients were subject
to mostly gradual drift during the 45 years of study with abrupt drift
setting in thereafter. An added question is whether volatility modeling
would have predicted the abrupt drift.

Adaptive model drift (AMD), whether gradual or abrupt, has parallels
in other fields, such as evolutionary and molecular biology. For the latter,
gradual drift reflects antigenic drift —minor changes in antigens due to
gene mutations in influenza virus—while abrupt drift reflects antigenic
shift —major changes in antigens due to gene reassessment in influenza
virus.

In evolution, gradual drift is analogous to Darwinian evolution, while
abrupt drift follows the Gould–Eldredge (1977) thesis of punctuated equilib-
rium . (Punctuated is used in the sense of a large meteorite hitting Chicago.)
At some point in time a small isolate of that larger species moves away
anatomically so that not very much time elapsed but the structure has shifted
dramatically . . . . In this model there are periods of stasis interrupted by
sudden surges of change—usually cladogenic. Whereas the adaptive mar-
ket hypothesis attempts to explain the markets in terms of evolutionary
biology, adaptive model drift allows modeling procedures to accommodate
dynamic market changes whatever the evolutionary mechanism.

The foregoing parallels between adaptive drift modeling and evolution
bring to mind disparate views on evolution. Lay opposition to Darwin’s
theory has been and continues to be in terms of intelligent design, whereas
Gould was linked to Marxism. Apparently motivated by Engle’s proph-
esy that Marxism will do for society what Darwin did for biology, an
English social scientist named Halsted—who presumably was appalled by
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the abrupt shock of Ten Days that Shook the World (Reed, 1919)—stated:
The concept of punctuated equilibrium is undoubtedly linked to Marxism.
Gould [replaces] gradualism with the flip-like style of change which has
been appreciated within Marxist philosophy for a long time. Gould (Gould
and Eldredge, 1977) replied: I did not develop the theory of punctuated equi-
librium as part of a sinister plot to ferment world revolution but rather as
an attempt to resolve the oldest empirical dilemma impeding an integration
of paleontology into modern evolutionary thought .

Commentary: Who cares if Gould’s theory is Marxist? In the late 19th
century, social anthropologists embraced Darwin’s theories and extended
them to explain cultural change. Similarly, some modern anthropologists
and sociologists have embraced this cladogenic theory and predicted imme-
diate culture change and immediate overthrow of governments . . . . People
are not independent of culture and vice versa. If scholars use physical evo-
lution as a springboard for social advocacy, then the metaphor of biological
change becomes a tool for politicians, revolutionaries, and many others
(Seth Mallios, private correspondence).

4.4 TIME-VARYING VOLATILITY

Let D(t) = E [D(t)] + εR(t) = D(t)∧ + eR(t), where, for example,
E [D(t)] + εR(t) is given by the right-hand side of (4.3.8). D(t)∧ denotes
a sample (fitted) form of the model, and eR(t) denotes the residual
corresponding to the model error εR(t). Unconditionally, the variance of
εR(t) is typically assumed to be homogeneous: variance[εR(t)] = σ2

εR .
Conditionally, however, the variance may vary with time so that
variance[ε(t)] = σ2

εR(t). One approach to modeling volatility is to assume
that ε2

R(t), as an estimate of σ2
εR(t), is generated in terms of an ARMA(p,

q) process, which is known as a GARCH(p, q) process. GARCH modeling
(Bollerslev, 1986), an acronym for “generalized autoregressive conditional
heteroskedasticity,” is a generalization of ARCH(p, q) modeling (Engle,
1982). For example, in a GARCH(1,1) process, ε2

R(t) is generated in terms
of an ARMA(1, 1) model:

eR(t)2 = µ + φeR(t − 1)2 + ψ�(t − 1) + �(t), (4.4.1)

where φ and ψ represent the respective effects of the autoregressive and
moving average variables, µ the mean, and �(t) the contemporaneous
model error.

Similar to the approach of structured stochastic volatility modeling,
GARCH processes may be generalized by assuming that coefficients are
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time varying; for example, (4.4.1) is replaced by

eR(t)2 = µ(t) + φ(t)eR(t − 1)2 + ψ(t)�(t − 1) + �(t). (4.4.2)

AR, MA, ARMA, or bilinear processes are likely candidates for generating
the time-varying coefficients; for example, for MA(1) processes,

µ(t) = µ + µ1�(t − 1) + δµ(t),

φ(t) = φ + φ1�(t − 1) + δφ(t),

ψ(t) = ψ + ψ1�(t − 1) + δψ(t). (4.4.3)

Substituting expressions for µ(t), φ(t), and ψ(t) in (4.4.3) into (4.4.2), we
have a reduced, second-order GARCH(1, 1) model:

eR(t)2 = µ + φeR(t − 1)2 + ψ�(t − 1) + µ1�(t − 1)

+φ1eR(t − 1)2�(t − 1) + ψ1�(t − 1)2 + �(t). (4.4.4)

An alternative model for eR(t)2 is to replace the first-order ARMA model
in (4.4.2) with a bilinear model and explore whether the time-varying coef-
ficients are generated by AR, MA, ARMA or even bilinear processes.

For the reduced variance model in (4.4.4), lagged second, third, and
fourth moments affect subsequent second moments, while for the reduced
mean model in (4.3.8), lagged first and second moments affect subsequent
first moments (means). In terms of a path diagram (Wright, 1921), an impli-
cation is that lags of kurtosis, skewness, and volatility affect subsequent
volatility, and in turn, lags of volatility and the mean affect subsequent
means.

There is a major shortcoming in these volatility modeling approaches.
Since eR(t)2 in (4.4.4) is based on the fitted model E [D((t)∧], the volatil-
ity model may be misleading when the model for E [D(t)] is specified
incorrectly. For example, if D(t) is modeled as a first-order ARMA process
when, in fact, a higher-order model is appropriate, the resulting volatility
model may erroneously reflect effects of higher-order terms that should have
been included in the D(t) model. This situation is illustrated in Chapter 9,
where alternative volatility models are explored.



5
Studies in Japanese
Candlestick Charts

5.1 BULLISH AND BEARISH CONFIGURATIONS FROM
CHARTIST PERSPECTIVES

Japanese candlestick charting was introduced in feudal Japan in the mid-
18th century to forecast price movements of forward contracts on the Osaka
Rice Exchange. It is said that a legendary rice trader named Munehisa
Homma devised the charts to develop insights into market psychology,
which, in turn, allowed him to amass a considerable fortune in the rice
market and eventually to rise to the rank of Samurai. This was nearly 100
years before the origin of traditional methods of chart analysis (Nisson,
1991).

Candlestick charts depict the opening [O(t)), high (H (t)), low (L(t)] and
closing [C (t)] prices defined over fixed time (t) intervals (e.g., minutes,
hours, days, weeks). The candlestick body is determined by O(t) and C (t),
where C (t)> O(t) and O(t)> C (t) are distinguished by white and dark
bodies, respectively. The upper extreme of the candlestick wick represents
H (t) and the lower extreme, L(t). Three hypothetical candlesticks were
illustrated in Figure 1.1.2.

Figures 5.1.1 and 5.1.2 present daily candlestick charts for Quality
Systems (stock symbol: QSII), the BLDRS Emerging Markets 50 ADR
Index (ADRE) The charts depict successive trading days from 9/21/05 to
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Figure 5.1.1 Daily candlestick chart for Quality Systems (QSII) from 9/21/05 to 2/17/06.
(Source: MSN Money)
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Figure 5.1.2 Daily candlestick chart for BLDRS Emerging Markets 50 ADR Index (ADRE) from
11/30/2009 to 2/4/2010. (Source: MSN Money)

2/17/06 for QSII and from 11/30/09 to 2/17/06 for ADRE. Also included
are the 5- and 20-day moving averages of C (t), denoted by Cb5(t−1)

and Cb20(t−1), respectively [e.g., Cb5(t−1) is the average of C (t−1),
C (t−2), . . . , C (t−5)]. Daily trading volumes are depicted at the bottom
of the chart and denoted by V (t).
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Candlestick charts provide a convenient method of graphing simulta-
neous (usually, cointegrated) time series (see Chapter 8) as well as price
volatility. They may also aid in identifying periods of likely market effi-
ciency and inefficiency as well as market irregularities. Moreover, in view
of the ongoing pandemic of financial and mathematical illiteracy, the charts
are effective means of teaching mathematics and finance, especially when
augmented by mixed-market (financial and sports gambling markets) spec-
ulation and investment games for high school and undergraduate students
(see Chapter 12).

Candlestick chartists use the charts to detect likely turning points (or
relative maxima and minima) described by a series of peaks and troughs
obscured by erratic disturbances. Such peaks and troughs are said to be
identified by a variety of candlestick reversal patterns. Table 5.1.1 presents
a condensed summary of selected patterns that are said to reflect likely
turning points. Complete listings of such patterns may be found in the
numerous Web sites on candlestick forecasting .

The bearish dark cloud cover patterns are said to be more prevalent than
the bullish piercing line patterns. The reason may be related to a reknown
Wall Street saying: In with greed, out with fear. Although both are strong
emotions, fear is more likely related to market volatility than greed. During
market bottoms, traders or investors usually have the opportunity to wait for
an opportunity to enter the market. They may bide their time and wait for the
pullback or for the market to build a base, or to see how the market reacts
to news. Fear is more prevalent at tops. Fear is saying “I want out—now”
(Nisson, 1991).

The daily candlestick chart in Figure 5.1.3 illustrates gaps in prices that
may be due to earnings reports or dividend announcements. Box 1 contains a
bullish engulfing pattern. Box 2 depicts the first gap and is a continuation of
the bullish trend. Following a flat period, box 3 depicts a bullish breakaway
pattern followed by the second gap.

Since the predictive validity of these candlestick patterns is certainly
open to question, a simple method of assessing their predictive validity is
through the tabulation of historical frequencies of subsequent, near-term
price changes following each specific pattern. Unfortunately, selected
empirical tabulations have not been convincing regarding forecasting
claims. However, on a more positive note, selected patterns may be of
value in identifying favorable near-term trading situations if such patterns
are conditional on the following factors:

1. Locations of the specific pattern with respect to the 5-and 20-day
moving average bands (particularly if specific configuration lies com-
pletely above or below the band)
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TABLE 5.1.1 Overview of Selected Bullish and Bearish Candlestick Patterns

1. Bullish engulfing pattern. During a downtrend, particularly when the most
recent dark body lies on or below the moving average band, the most recent body is white,
establishes a low for the downtrend, and engulfs the previous day’s dark body.

2. Bearish engulfing pattern. As the opposite of the bullish engulfing pattern, the
most recent body is dark, establishes a high for the uptrend, and engulfs the previous day’s
white body.

3. Bullish piercing pattern. Following a downtrend, the most recent body is
white, forms a new low, and closes above the midpoint of the previous body, which is dark.

4. Bearish dark cloud cover. As the opposite of the bullish piercing pattern, the
most recent body is dark, forms a new high, and closes below the midpoint of the previous
body, which is white.

5. Bullish morning star. This reversal is identified by the three most recent
bodies. There is a gap between the first two bodies, which continue the downtrend. The
second body may be either white or dark. The most recent body is white and closes above
the midpoint of the first body.

6. Bearish evening star. As the opposite of the bullish morning star, this
reversal is again identified by the three most recent bodies. There is a gap between the first
two bodies, which continue the uptrend. The second body may be either white or dark. The
most recent body is dark and closes below the midpoint of the first body.
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TABLE 5.1.1 (Continued)

7. Bullish hammer. In a downtrend, the most recent body, either white or dark,
moves significantly lower after the opening and then rallies to close well above the low.
The resulting candlestick resembles a hammer and is said to hammer down the bottom.
Unless it lies well below the moving average band, this pattern requires confirmation in
terms of observing the subsequent candlestick to confirm the low.

8. Bearish hanging man. As the opposite of the bullish hammer, the most recent
candlestick in upward trend resembles a hanging man. This candlestick forms when the
price moves significantly lower after the opening, but rallies to close well above the
intraday low. The resulting candlestick looks like a square lollipop with a long stick. Similar
to the bullish hammer, this pattern requires confirmation.

9. Bullish harami pattern. Harami translates as pregnant, where one candlestick
is completely contained in the subsequent candlestick body. The body of the most recent
candlestick may be either white or dark, but preferably white.

10. Bearish harami pattern. This pattern is the bearish analogy of the bullish
harami pattern, where the most recent candlestick can be either white or dark, but
preferably dark.

11. Bullish rising three methods. A bullish continuation pattern in
which a long white body is followed by three small-body days, each fully contained within
the range of the high and low of the first day. The fifth day closes at a new high.

12. Bearish falling three methods. This pattern is the bearish analogy
to the bullish rising three methods. A long black body is followed by three small-body
days, each fully contained within the range of the high and low of the first day. The fifth
day closes at a new low.

(continued overleaf)
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TABLE 5.1.1 (Continued)

13. Bullish three white soldiers. The second white body defines a bullish
piercing pattern. The third and most recent candlestick adds to the likelihood of a bullish
uptrend. This bullish reversal pattern consists of three consecutive long white bodies.
Each should open within the previous body and the close should be near the high of
the day.

14. Bearish three black crows. This pattern is the bearish analogy of the
bullish three white soldiers. This reversal pattern consists of three consecutive long black
bodies, where each day closes at or near its low and opens within the body of the
previous day.

15. Bullish stick sandwich. This bullish reversal pattern has two black bodies
surrounding a white body. The closing prices of the two black bodies must be equal. A
support price is apparent, and the opportunity for prices to reverse is said to
be good.

16. Bearish upside gap two crows. This three-day bearish pattern is said to
occur only in an uptrend. The first day is a long white body followed by a gapped opening
with the small black body remaining gapped above the first day. The third day is also a
black day, whose body is larger than that on the second day and engulfs it. The close of
the last day is still above the first long white day.
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TABLE 5.1.1 (Continued)

17. Continued bullish upside tasuki gap. A bullish continuation pattern with a
long white body followed by another white body that has gapped above the first one. The
third day is black and opens within the body of the second day, then closes in the gap
between the first two days, but does not close the gap.

18. Continued bearish downside tasuki gap. A bearish continuation pattern with
a long, black body, followed by another black body that has gapped below the first one.
The third day is white and opens within the body of the second day, then closes in the gap
between the first two days, but does not close the gap.

19. Bearish three-line strike. The most recent white body encompasses the
three previous black bodies. An implication is that the strong rally during the most recent
time period will lead to profit taking.

20. Bullish three-line strike. The most recent black body encompasses the
three previous white bodies. An implication is that the sell-off provides a buying opportunity.

21. Bullish concealing baby swallow. The four most recent time periods
are comprised of bearish candlesticks. The pattern is said to indicate a trend reversal
because of the extreme bearishness of the trend.

(continued overleaf)
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TABLE 5.1.1 (Continued)

22. Bullish stick sandwich. A reversal pattern with two black bodies
surrounding a white body. The closing prices of the two black bodies must be equal.
A support price is apparent and the opportunity for prices to reverse is said to be good.

23. Doji. Doji form when a security’s opening and closing are virtually equal. The
length of the upper and lower shadows can vary, and the resulting candlestick looks like
either a cross, an inverted cross, or a plus sign. Doji convey a sense of indecision or a
tug-of-war between buyers and sellers. Prices move above and below the opening level
during the session, but close at or near the opening level.

24. Bullish inverted hammer pattern. In a downtrend, the most recent
candlestick is either white or dark, lies beneath the close of the previous dark body, and
has a wick that is at least twice the length of the body.

25. Bearish shooting-star pattern. This pattern is the bearish counterpart to the
bullish inverted hammer pattern; that is, in an uptrend, the most recent candlestick is
either white or dark, lies above the close of the previous white body, and has a wick that is
at least twice the length of the body.

2. Distances between the two moving price averages (particularly if such
distances become relatively large)

3. Elapsed time since the most recent crossover between the two moving
price averages (in the sense that the longer the time lapse, the more
likely the occurrence of a subsequent near-term crossover)

4. The number of relative maxima or minima that occur between suc-
cessive crossovers of the moving average bands
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Figure 5.1.3 Daily candlestick chart for Natus Medical Inc. (BABY) from 7/16/09 to 9/21/09.
(Source: MSN Money)

5. Volume trends that accompany the specific patterns
6. Relationships between near-term straight-line, quadratic, and cubic

trends for each of the seven individual time series presented in the
candlestick charts

These factors will be shown to be critical to effective forecasting during
periods of market inefficiency.

Figures 5.1.1 and 5.1.2 illustrate several of the patterns in Table 5.1.1. For
Figure 5.1.1, note that a long-term purchase of QSII stock in mid-September
2005 (the beginning of the chart) at approximately $32/share would have
resulted in a gain of just over $4/share by mid-February 2006 (the end of the
chart). In contrast, effective active trading (alternating between near-term
long and short positions) may have led to a gain of 75% or more in the
initial investment. Box 1 in Figure 5.1.1 contains a bullish hammer pattern
that is confirmed by the following day’s white body. A bearish dark cloud
pattern appears in box 2. Box 3 begins with a bullish engulfing pattern and
ends with a bullish breakaway pattern. Although the overall trend is bullish,
several bearish patterns occur between the latter bullish patterns. From the
beginning of box 3 through 11/1/05, three relative minima are observed
before the 5-day moving average band crosses above the 20-day moving
average band.
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It is not uncommon for two to three relative extremes to occur between
successive crossovers of the moving average bands, especially when they
follow a significant price change from a major relative maximum (mini-
mum) to the next major relative minimum (maximum). For box 3, adaptive
modeling is particularly useful for purposes of discerning, if possible, erratic
price changes from the overall positive trend. Periods such as those in box 3
are characteristic of both losses and gains for the active trader.

Box 4 contains a bearish dark cloud cover pattern. Box 5 is similar to
box 3 in that it begins with a bullish morning star pattern, followed by
erratic price movements, and ends with a bullish breakaway pattern. Box
6 correctly identifies a major bearish downturn. Based on these chartist
forecasts, the disciplined active trader would probably have had minor losses
combined with major gains overall.

Figure 5.1.2 illustrates bearish patterns in each of boxes 1 and 3 and a
bullish pattern in box 2. The intervening periods are best evaluated through
the model forecasts discussed in Chapter 9. The five successive black bod-
ies at the end of the chart are a likely indicator of a forthcoming upturn,
especially if the volumes do not support a continued downturn and if the
distance between the moving averages continues to increase.

5.2 BLACK MONDAY

From August 1982 to the peak in August 1987, the Dow Jones Industrial
Average (DJIA) increased from 776 to 2711. The increase in market indices
for the 19 largest markets in the world averaged 296% during this period.
The average number of shares traded on the New York Stock Exchange had
risen from 65 million to 181 million.

October 19, 1987, a date known as Black Monday, marked the
culmination of a market decline that started five days earlier. On Black
Monday, the DJIA plummeted 508 points, losing 22.6% of its value in one
day. The crash was the greatest single-day loss that Wall Street had ever
suffered in continuous trading up to that point. Between the start of trading
on October 14 and the close on October 19, the DJIA lost 760 points,
a decline of over 31%. The crash was a worldwide phenomenon, with
all major world markets declined substantially. Aside from herd behavior
and worries of stock market overvaluation, program trading, derivatives,
a worsening U.S. trade deficit, and a falling U.S. dollar were said to be
factors contributing to the crash.

The daily candlestick chart for the period in question is presented in
Figure 5.2.1. Prominent bearish configurations appeared prior to the crash,
beginning with a bearish engulfing body on the day following 10/5, followed
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Figure 5.2.1 Daily candlestick chart of Dow Jones Industrial Average during the period of the
October 1987 crash. (Source: MSN Money)

by a second bearish engulfing body two days following 10/12; see the box.
The crash occurred three days later.

In the two-year period following Black Monday, the markets had fully
recovered. However, nearly two years later, on 10/16/89, there was a sim-
ilar crash; see Figure 5.2.2. Similar to Figure 5.2.1, bearish patterns were
formed the day following 10/9 (see the box). These bearish patterns fol-
lowed six successive white bodies (all above or nearly above the 5-day
moving average) and a 10-day stretch in which nine of the 10 candlestick
bodies were white and led to a gain in the Dow from approximately 2670
to 2790. Such gains are conducive to profit taking and shorting.

The fourth worse drop in the Dow occurred on December 1, 2008;
see Figure 5.2.3. A bullish engulfing pattern occurred one day prior to
November 24, 2008. However, the crash that occurred six days later came
without the forewarnings that preceded the crashes depicted in Figures 5.2.1
and 5.2.2. The crash on December 1 was preceded by five white bodies that
led to a 600-point short-term gain in the Dow; see the box. However, there
was no obvious pattern that foretold the downturn on 12/1/08.

The Crash in Figure 5.2.3 is examined in terms the intraday, 5-minute
candlestick chart for 12/1/08, as presented in Figure 5.2.4. It is seen that the
Dow dropped over 200 points in the first 5 minutes of trading (see box 1)
and then stabilized around 8400 until shortly after 3 p.m., at which time the
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Figure 5.2.2 Daily candlestick chart of Dow Jones Industrial Average during the period of the
October 1989 crash.

Figure 5.2.3 Daily candlestick chart of Dow Jones Industrial Average during the fourth worse
drop that occurred on 12/1/08. (Source: MSN Money)

Dow dropped another 200 points (see box 2). The latter drop was preceded
by a bearish pattern.

The 1929 stock market crash is said to have occurred on Thursday,
October 24 (Black Thursday) and the following Tuesday, October 29 (Black
Tuesday). After reaching a record high of 381.2 on 9/3/29, the DJIA fell to
199 by 11/13/29. Today’s observer might find the drop in DJIA rather trivial
during the 1929 crash. However, an adjustment of the record high of 381.2
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Figure 5.2.4 Intraday, five-minute candlestick chart for the Dow Jones Index on 12/1/08, the
day of the fourth worse drop.

for nominal gross domestic product per head (a proxy for average wages)
results in an astounding high of 21,000. It has become almost conventional
wisdom today that the 2000 peak of 11,700 on the Dow was a record
level of overvaluation, based on the twin measures of the 10-year rolling
inflation-adjusted price–earnings ratio and the q ratio of price to book value
(Jackson, 1/11/10). By the time the crash was completed in 1932, stocks
had lost nearly 90% of their value.

The accompanying daily candlestick chart in Figure 5.2.5 shows two
bearish breakaway patterns, the first of which occurred on 10/16/29; see
the box. Following the low on 11/13/29, a bullish piercing configuration
was followed by a brief rally.

In arguing that the volume of reserves in the banking system would
fuel inflation, the Federal Reserve Board—with the concurrence of Trea-
sury Secretary Henry Morgenthau, Jr., many financial experts, and leading
academics—doubled commercial bank holding requirements in three stages
from 8/36 to 5/37. The banks responded by calling in loans to build a liquid-
ity cushion above legal requirements, thereby sharply contracting money,
credit, and economic activity. The FED action, acknowledged as one of the
gravest policy errors of the Depression era, reversed the earlier recovery
and led to the 1937 recession. Even if the banks had used their excess
reserves to expand credit and the money supply, unchecked inflation was
not possible due to the high unemployment rates in 1936 and 1937. There
was complete economic recovery only after the start of World War II.
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Figure 5.2.5 Daily candlestick chart of DJIA during the period of the market crash of
October–November 1929. (Source: MSN Money)

Figure 5.2.6 Weekly candlestick chart for the weekly Dow Jones Industrial Average Index from
6/7/37 to 4/4/38. (Source: MSN Money)
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As indicated in Figure 5.2.6, the policy actions by the 1936 Fed had a
lagged effect that led to a major drop in INDU. The downturn was flagged
by the negative engulfing pattern the second week following 8/2/37; see
the box. For those traders astute in shorting, this period provided major
profit-making opportunities.

The apparent end of the 2008–2009 recession has pitted interest-rate
doves—those who advocate keeping interest rates low for an extended
period of time—against interest-rate hawks—those who advocate mean-
ingful rate increases to prevent inflation from gaining a foothold. The US
New Deal recovery was turned into a mini-depression in 1937–1938 because
of premature action to tighten money and balance the US budget. There is
now more danger of economic stimuli across the world being reversed too
soon than of their being continued too long (Brittan, 7/24/09). The doves
also point to Japan’s experience in the 1990s regarding raising rates too
early in the recovery. The hawks, motivated by fears of inflationary peri-
ods that date back to the Weimar Republic, maintain that the government’s
stimulus spending has made the likelihood of inflation all the more certain.

5.3 A MATTER OF ALLEGED INSIDER TRADING

For several publicized cases of alleged or proven insider trading, we present
accompanying candlestick charts to explore whether such trading coincided
with bullish or bearish patterns. If so, the unanswered question is whether
the specific pattern may have been a partial reflection of insider trading.

Case 5.3.1: The Martha Stewart case ImClone Systems Incorpo-
rated, a biopharmaceutical company dedicated to developing biological
medicines in the area of oncology, accepted a $6.5 billion acquisition offer
from Eli Lilly and became a fully owned subsidiary in 2008. ImClone’s
stock price dropped sharply at the end of 2001 when its drug Erbitux, an
experimental monoclonal antibody, failed to get the expected U.S. Food and
Drug Administration (FDA) approval. It was later revealed by the Securities
and Exchange Commission (SEC) that prior to the announcement (after the
close of trading on December 28, 2001) of the FDA’s decision, numerous
executives sold their stock.

ImClone’s founder, S. Waksal, was arrested in 2002 on insider trading
charges for informing friends and family to sell their stock and attempting
to sell his own. His daughter sold $2.5 million in shares on December 27.
His father sold $8.1 million in shares over December 27 and 28. Company
executives followed suit. ImClone’s general counsel sold $2.5 million in
shares on December 6, and the vice president for marketing and sales sold
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Figure 5.3.1 Daily candlestick of ImClone during the period of alleged insider trading on
12/27/01. (Source: MSN Money)

$2.1 million in shares on December 11. Four other executives sold shares in
the following weeks as well. Later, founder Waksal pleaded guilty to various
charges, including securities fraud, and on June 10, 2003 was sentenced to
seven years and three months in prison.

Martha Stewart became embroiled in the scandal after it emerged that she
sold about $230,000 in ImClone shares on December 27, just a day before
the announcement of the FDA decision. Although Stewart maintained her
innocence, she was found guilty and sentenced on July 16, 2004 to five
months in prison, five months of home confinement, and two years of
probation for lying about a stock sale, conspiracy, and obstruction of justice.

Figure 5.3.1 presents a daily candlestick chart during the period in ques-
tion. Throughout December, bearish configurations dominate; see the box.
A bearish dark cloud cover appears on December 6 (the day the ImClone
general counsel sold his stock) followed by a bearish engulfing pattern on
December 17 and a bearish breakaway from the norm on December 27 (the
day that Stewart and others sold their stock).

Case 5.3.2: The Mark Cuban case On 11/17/08, the SEC accussed
Mark Cuban, owner of the Dallas Mavericks, of insider trading. It is alleged
that on June 28, 2004, Cuban sold his entire holdings in the Internet com-
pany Mamma.com (now Copernic, Inc.) within four hours of being told
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Figure 5.3.2 Daily candlestick chart for Copernic, Inc. (CNIC) during the period of alleged
insider trading on June 28, 2004. (Source: MSN Money)

confidential information about an impending stock offering. According to
the SEC, Cuban knew that the shares would be sold below the current
market price and avoided losses in excess of $750,000 by selling 600,000
shares prior to the public offering announcement.

Figure 5.3.2 present the daily candlestick chart for Copernic, Inc. (stock
symbol: CNIC) during the period of alleged insider trading. On the day in
question, June 28, 2004, the candlestick displays a bullish, breakaway white
body which is followed by a tombstone pattern; see the box. If Cuban sold
on June 28, he, in fact, sold at an opportune time. If he were to have sold
the stock on the following days through 7/1/24, it would have been under
the sign of bearish patterns.

On 7/17/09, U.S. District Judge S. Fitzwater ruled that the SEC could
not hold Cuban liable for insider trading because the agency did not allege
that Cuban had agreed not to trade based on confidential information
about CNIC. (Note: An insider is someone who has a position in a
business or stock brokerage which makes him or her privy to confidential
information—such as future changes in management, upcoming profit and
loss reports, secret sales figures, and merger negotiations—which will
affect the value of stocks or bonds. Although there is nothing wrong with
being an insider, use of the confidential information unavailable to the
investing public in order to profit through sale or purchase of stocks or
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bonds is unethical and a crime under the 1934 Securities and Exchange
Act.1

The failed case against Cuban exposes the division in the way that U.S.
and UK authorities enforce rules against insider trading. In contrast to the
Cuban ruling, the Financial Services Authority, the City of London reg-
ulator, brought several cases successfully in the past year against traders
and their brokers for selling shares after learning of coming new issues
that could depress the price of their holdings . . . . The essential difference
between the two countries is that the US only bars trading when it is based
on confidential information that is . . . stolen or misused, while the UK ban
is broader, involving market-moving private information . . . . The Securities
and Exchange Commission is hoping the appeals court [in the Cuban case]
will narrow the gap between the two countries . . . . An SEC spokesman said:
“We believe the district court erred” (Masters, 10/12/09).

Case 5.3.3: The Dow Jones & Company case On 5/7/07, the
SEC filed a lawsuit against a Hong Kong couple, Kan King Wong and
Charlotte Ka Leung, for allegedly using insider information to make $8.2
million profit from trading 415,000 shares of Dow Jones & Company (DJ)
through a joint Merrill Lynch (ML) account during the two weeks prior to
Rupert Murdock’s News Corp.’s takeover bid becoming public on May 1.
A surge in volume in DJ June and September call options just to the public
announcement suggested to some ML analysts that some investors knew
that an offer was in the works.

Contacted by ML about the trading activity, the SEC said in its com-
plaint that the highly profitable and highly suspicious trading was unlike
any previous trading in which the couple had been involved. A federal
judge granted the SEC request to freeze the account’s assets. The SEC also
asked that the couple forfeit all profits realized from the unlawful trading
alleged , but did not say how the Leungs obtained advance notice of the
News Corp. bid. However, David Li, chairman of Bank of East Asia and
a former director of Dow Jones & Co., reached a tentative agreement with
the SEC to pay $8 million to settle the suit. It was disclosed that Leung’s

1In the 1920s, insider trading was rampant. Such trading was, at the time, legal, and Joseph
Kennedy, father of President John F. Kennedy, was a master at the game. It’s easy to make
money in this market , said Kennedy to an associate. We’d better get in before they pass a law
against it . By the mid-1920s, he had accumulated a net worth of $2 million—which, for
those times, was considerable. Kennedy then became a key financial contributor to Franklin
Roosevelt’s 1932 presidential campaign. As a reward, Kennedy was appointed the inaugural
chairman of the SEC. When Roosevelt was asked why he had tapped such a crook, he
replied, Takes one to catch one (Legal dictionary.thefreedictionary.com, 2009).
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Figure 5.3.3 Daily candlestick chart for Dow Jones (DJ) during its takeover by Rupert Mur-
dock’s News Corp. The takeover bid became public on May 1, 2007, at which time the share
price of DJ rose 58%. (Source: MSN Money)

father, Michael Leung, had close business and social ties with Li over the
course of two investigations.

The daily candlestick chart in Figure 5.3.3, depicting DJ price and volume
movements during the period of the 5/1 public announcement, shows no
evidence of bullish indicators just prior to the announcement; see the box.
(Dow Jones share prices surged by 58% when the bid was announced.)
However, analyses by Tyler (5/3/07) on the DJ surge in September call
options (see Figure 5.3.4) provide evidence that some investors knew that
the Murdock offer was forthcoming.

The two suspicious option spikes depicted in Figure 5.3.4 occurred on
4/25 and 4/30. The first involved 3000 September 40 calls, which closed
the day at approximately $0.80, and the second involved more that 3400
September 45 calls, which closed the day at approximately $0.30. More
than 600 June 40 calls also traded on 4//30 and also closed at approximately
$0.30. Related to the activity just provided, one might say that that’s pretty
suspect and obviously somebody or some persons knew something big was
about to happen. However, the observation here is that while the buying
will likely turn up as the illegal variety, in all honesty, it wasn’t enough to
set off technical and optionable alerts worthy of providing a “sure thing”
investment for other strategists (Tyler, 5/3/07).
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Currently: 04-30-07

Figure 5.3.4 Dow Jones options activity just prior to the Dow Jones takeover by Rupert
Murdock’s News Corp. (Source: Tyler, 5/3/07)

Case 5.3.4: The EADS case On October 8, 2008, France’s stock mar-
ket regulator [known by its French acronym, AMF] found itself yet again
at the center of controversy after findings from its two-year investigation
into controversial share dealings at EADS [the parent company of Airbus]
were posted on the Internet . . . . AMF is alleging that 17 EADS executives,
and their two core shareholders, had access to privileged information when
they sold shares in a period stretching from November 2005 to April 2006
(Hollinger, 4/9/08). The AMF investigation was triggered when top man-
agement and shareholders carried out suspicious share trades in the time
before EADS revealed severe delays in production of the Airbus A380
superjumbo jet in June 2006. Word of those delays caused shares in EADS
to drop by a quarter at the time.

Figure 5.3.5 presents monthly candlestick chart for EADS from 8/24/04
to 11/24/08. During November 2005 (see box 1), several EADS and Airbus
directors sold their EADS shares. During March 2006 (see box 2), EADS
share prices reached a maximum as more executives either sold shares or
exercised put options. Box 2 displays a pronounced bearish piercing pattern,
which would have led active chartist traders to cover long positions and/or
initiate short positions. On June 13 (box 3), share prices dropped 26%
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Figure 5.3.5 Monthly candlestick chart for EADS from January 2004 through November 2008.

when Airbus announced a second six-month delay in A380 deliveries. On
November 24, 2006 (box 4), French authorities launched an investigation
into possible insider trading.

In July 2009, a provisional report prepared for the French financial mar-
kets regulator by an independent examiner recommended $17.4 million in
fines against seven current and former Airbus executives and $1 million
in fines against EADS for alleged market information delays. The report
was not binding, but the examiners’ views were taken into account by the
sanctions committee, which was to make its decision by the end of 2009
(Daneshku and Done, 7/29/07).

Case 5.3.5: The Galleon hedge fund case On 10/16/09, billionaire
investor Raj Rajaratnam, founder of the Galleon hedge fund, and present and
former executives of Bear Sterns, IBM, Intel, and McKinsey were charged
with an insider trading scheme that prosecutors called the biggest ever
involving hedge funds . . . . The case marked the first time court-authorized
wire taps—a traditional tool of investigators pursuing mob bosses and drug
kingpins—had been used in a significant insider trading case. Rajaratnam
and others are alleged to have used insider information to trade ahead of
earnings announcements, acquisitions, and joint venture deals involving
companies such as Google, Hilton, and IBM.

Rajaratnam allegedly made a $4 million profit in July 2007 by buying
400,000 shares in Hilton after receiving nonpublic information about the
impending purchase of the hotel chain by Blackstone, a private equity firm.
Two weeks following the Hilton trade, Rajaratnam allegedly made $500,000
by trading Google stock based on inside information that Google would
announce disappointing quarterly earnings (Chung, 10/17/09).
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Figure 5.3.6 Daily candlestick chart: insider trading and the decline of Google (GOOG) share
prices following its disappointing earnings report on 11/7/07. (Source: MSN Money)

Figure 5.3.6 presents a daily candlestick chart for Google (GOOG) during
the alleged insider trading prior to the announcement of the disappointing
third-quarter earnings reports. Note that in the five-week period following
10//1/07, Google share prices increased from $580 to over $740 with very
little profit taking. The negative engulfing pattern on 11/7/07 is preceded by
eight consecutive white bodies and an excessive period of time during which
the width of the moving average band is large—all of which portend profit
taking; see box 1. The announcement of disappointing earnings occurred
following the close of business on 11/07/07. The share price then dropped
to $630 before a cover short and buy pattern resulted. In this particular
situation, the actions of an astute active trader would probably have been
very similar to those of insider traders.

There were many other revelations in the Galleon case. Advanced Micro
Devices (AMD) spun off its manufacturing arm in October 2008 into a
new chipmaker company, Globalfoundries, with an investment of up to
$8.4 billion from Abu Dhabi. Government legal filings state an unnamed
ADM executive passed on nonpublic information about the transaction to
Danielle Chiesi, a hedge fund manager who was one of the six people
arrested in the Galleon case. Chiesi was told that it was 99% certain that
the spin-off would take place before AMD’s third-quarter earnings were
announced on October 2008. You know, we’re gonna shock the hell out
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Figure 5.3.7 Daily candlestick chart for AMD during announcement of the spin-off of Global-
foundries on 10/7/09. (Source: MSN Money)

of everybody , the ADM executive said. The formation of Globalfoundries
was announced on 10/8/08 and ADM’s share prices rose more than 8.5%:
from $4.23/share on 10/6/08 to $4.59/share the following day (Nuttall,
11/3/09).

Figure 5.3.7 presents a daily AMD candlestick chart for the late
August–early November period. The candlestick pattern through 10/6
provides no forewarning of the price increase on 10/7, which was
accompanied by a massive volume of nearly 80 million shares. A buy
order during the late trading hours of 10/6 coupled with a sell order in
the early trading hours of 10/7 would have resulted in a one-days gain of
nearly 25%; see the box.

Shock waves from the Galleon case continued as criminal charges
were brought against 14 people for alleged participation in insider trading
schemes. An attorney with the law firm of Ropes & Gray, Arthur Citillo,
was one of those charged. He allegedly misappropriated price-sensitive,
nonpublic information from his firm, as they advised hedge funds in
acquisitions, such as the acquisition of 3Com by Baines Capital Partners
(which was announced on 9/28/07).

Figure 5.3.8 presents a daily candlestick chart for 3Com that encompasses
the public announcement of the acquisition on 9/28/07. From 9/27 to 9/28,
the closing price increased 37%, from $3.60 to $4.94. From a chartist’s
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Figure 5.3.8 Daily candlestick chart for 3Com. The acquisition of 3Com by Bain Capital
Partners was announced on 9/28/07. (Source: MSN Money)

perspective, the 9/28 announcement is preceded by the bullish candlestick
pattern of three successive, nonoverlapping white bodies; see the box. Note
also that the first of these white bodies forms a relative minimum that lies
beneath the 20-day moving average.

The 3Com saga continued. On 11/11/09, Hewlett-Packard agreed to buy
3Com for $2.7 billion in cash. Call options gained as much as 315% follow-
ing the announced take-over. More than 8,000 3Com calls changed hands on
11/11/09, 17 times the four-week moving average. The most active were con-
tracts conveying the right to purchase 3Com for $5/share through 11/20/09.
“Somebody knew something was coming,” said Stefen Choy, founder of
Livevol Inc., a provider of options market data and analytics. “It looks like
very unusual call buying. I see this very frequently when there’s a take-over”
(Kearns, 11/12/09).

Figure 5.3.9 presents the daily 3Com candlestick chart for the eight-
week period prior to the 11/12/09 takeover announcement. Note the bullish
engulfing pattern the day following 11/2/09 and a bullish breakaway pat-
tern (with an increased volume) the trading day prior to 11/11/09; see the
box. These bullish patterns appear innocuous in the presence of insider
trading—in contrast to the surge in the call volume on 11/11/09.

According to the court filings disclosed on 2/2/20, David Slaine, a
former employee of the hedge fund Chelsey Capital, pleaded guilt to
conspiracy and securities fraud charges in the continuing Galleon case. The
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Figure 5.3.9 Daily candlestick chart for 3Com prior to the 11/12/09 takeover of 3Com by
Hewlett-Packard. (Source: MSN Money)
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Figure 5.3.10 Daily candlestick chart for Nvidia (NVDA) during its downgrade by UBS on
11/8/02. (Source: MSN Money)

specific instances to which he pleaded guilty occurred in 2002, when Mr.
Slaine allegedly received information from two insiders at UBC indicating
that [on or about 11/21/02] its research department would downgrade its
ratings of Nvidia, a technology stock . . . . Slaine said he persuaded Chelsy
Capital to sell short about 200,000 shares in the stock, while he shorted
75,000 shares. When the research was published, and Nvidia’s shares fell,
Chelsey and Mr. Slaine reaped profits of $69,000 and $33,000 respectively
(Farrell, 2/3/10).
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Figure 5.3.10 presents a daily candlestick charts for Nvidia (NVDA)
during the period in question. The downgrade on 11/21/02 and the slight
drop in the closing price the following day are identified in box 3. Curiously,
these insider trading profits are minor compared with the profits obtained
through active chartist trading during this period. Box 1 shows a bearish
pattern that is followed by a sharp drop in prices. Thereafter a bullish pattern
occurs in box 2. Box 4 shows another bearish pattern where long positions
should be traded for short positions.

5.4 COMMODITY BUBBLES AND VOLATILITY

I contend that financial markets always present a distorted picture of real-
ity. The mispricing of financial assets can affect the so-called fundamentals
that the price of those assets is supposed to reflect. That is the principle of
reflexivity. Instead of a tendency towards equilibrium, financial markets have
a tendency to develop bubbles. Bubbles are not irrational: it pays to join
the crowd, at least for a while. So regulators cannot count on the market to
correct its excesses. . . . The crash of 2008 was caused by the collapse of a
super-bubble that was growing since 1980. This was composed of smaller
bubbles. Each time a financial crisis occurred the authorities intervened, took
care of failing institutions, and applied monetary and fiscal stimulus, inflating
the super-bubble even further. (Soros, 10/26/09)

Traditionally, the commodities futures markets were used by participants
who produce commodities or rely on them to do business. Speculators were
said to provide price liquidity. However, in recent years speculative monies
from hedge funds, pension funds, and index funds linked to commodities
increased from $13 billion in 2003 to $260 billion in 2008. Many lawmak-
ers now blame the price bubbling increases on these speculators. Others
argue that supply and demand, along with low interest rates, are more to
blame than the speculators. However, all parties acknowledge the reality of
increased demand for commodities from emerging markets such as China
and India.

Figures 5.4.1–5.4.5 present weekly candlesticks charts for gold (per
ounce), sugar (per pound), the Australian dollar (U.S. dollar/Australian dol-
lar) and monthly charts for crude oil (per barrel) and corn (per bushel). The
charts (which include a single four-period moving average) are intended to
illustrate the price volatility and bubbles rather than the predictive valid-
ity of reversal patterns—which, for Figures 5.4.1–5.4.5, is often hit and
miss. The risks associated with price volatility led researchers to model the
expected variability associated with price changes through GARCH-type
modeling, introduced in Section 4.4.
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Figure 5.4.1 Weekly candlestick chart for Comex Gold (GC, Globex) from April 2007 to Novem-
ber 2009. Prices are in terms of U.S. dollars per ounce of gold. (Source: Tradingchart.com
Inc.)

Weekly prices for gold in Figure 5.4.1 ranged from under $700/ ounce
in October 2008 to a high of over $1200/ ounce a year later. Assorted
prognosticators have the price of gold extending above $2000/ ounce in the
2010–2011 period. Combined with periods of high volatility, bullish and
bearish reversals appear to be indicated when prices deviate by more than
$100/ ounce from the four-week moving average, such as for candlesticks
within the four boxes.

For crude oil prices in Figure 5.4.2, the price went from under $20/barrel
in late 2001 to a high of $147/barrel in mid-2008 and then crashed to a
low of $32/barrel in late 2008. The bullish pattern in box 1 precedes the
extreme price volatility in box 2. The latter contains a bearish pattern that
precedes the collapse of the bubble. The question in box 2 is the extent to
which the price volatility could be modeled effectively.

For the sugar prices in Figure 5.4.3, the peak of the bubble was yet to
form. There is an initial bearish pattern in 2008 (see box 1) and at least
three bullish patterns thereafter (see boxes 2 to 4). By late January 2010, the
crisis over a scarcity of sugar deepened after Indonesia, one of the world’s
leading importers, was unable to buy a single pound of the sweetener in
its latest tender . The setback sent the cost of raw sugar in New York to
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Figure 5.4.2 Monthly candlestick chart for NYMEX Crude Oil (Light) (CL, Globex) from October
2000 through December 2009. Prices are in terms of U.S. dollars per barrel of oil; one barrel
contains 40 gallons. (Source: Tradingchart.com Inc.)
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Figure 5.4.3 Weekly candlestick chart for sugar (SB, ICE, NYBOT) from October 2008 through
December 2009. Prices are in terms of cents per pound. (Source: Tradingchart.com Inc.)

U
T

X
A

|x
7c

m
V

gT
j5

uE
=

|1
31

43
47

56
2



5.4 COMMODITY BUBBLES AND VOLATILITY 75

1
2

3

4

5

6

Figure 5.4.4 Monthly candlestick chart for Corn Mini (YC, CBOT) from October 2008 through
December 2009. Prices are in terms of price per bushel times 100. (Source: Tradingchart.com
Inc.)

a 29-year high of $0.29/pound. Although sugar is no longer a key food
commodity in developed countries, it is still a crucial source of calories in
emerging countries, making its price a political issue. The sugar crisis has
been caused by a large supply deficit due to disappointing crops in Brazil
and India, the world’s top producer, due to bad weather (Blas, 1/22/10).

Regarding the price of a bushel of corn, Figure 5.4.4 depicts the most
recent bubble and the excessive price volatility in the bubble’s final forma-
tion and deflation; see box 6. Prior to the formation of the bubble, there are
alternating bearish patterns (see boxes 1 and 3 and the beginning of box 5)
followed by bullish patterns; see boxes 2 and 4 and the end of box 5. The
bubble in corn prices has been attributed to a number of factors, includ-
ing hedge fund speculation, bad weather conditions in corn-growing states
such as Iowa, the demand for ethanol, and rising meat consumption in the
developing world.

Figure 5.4.5 shows the severe decline in the value of the U.S. dollar
($US) relative to the Australian dollar ($A) during 2009. A bearish pattern
occurred prior to the sharp decline in the U.S. dollar in August 2008; see
box 1. This pattern was followed by excessive volatility in the final stages
of the decline; see box 2. The second relative minimum reveals a bullish
indicator; see box 3.
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Figure 5.4.5 Weekly candlestick chart for the CME Australian dollar (A6, Globex) from mid-
December 2007 through mid-January 2010. Prices are in terms of U.S. dollar/Australian dollar.
(Source: Tradingchart.com Inc.)

Australian commentator Kenneth Davidson gave the following three rea-
sons for the rise of the Australian dollar (as reported by Keen, 10/27/09):

1. The government bailout funds in the U.S. and U.K. have cashed up
financial institutions that don’t want to lend any more to mortgages
(and have long ago forgotten how to lend to fund productive enter-
prises), so they’re looking for short term hot money gains .

2. The Reserve Bank of Australia’s flagging that it intends raising rates
from 2–3% above rates in the U.S. to possibly 4–5% above is a “sure
thing” return on a currency that was already appreciating because of
commodity sales to China.

3. This gives the hedge funds a sure fire double whammy gain: borrow in
the U.S. and U.K. at 1% to buy $A and “invest” in floating rate bonds
or shares (particularly in banks) and get a higher return (at least 2%
better than the borrowing costs, and assured to rise); and drive up the
$A in the process, so that when you sell out, you get both a higher
return and an appreciated currency in which it is denominated .

The most remarkable thing about this bubble is that the RBA’s “we’re
raising rates now and we’re going to keep on doing it for a few months”
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messages are part of the cause, and yet they seem unaware of both the
phenomenon and the dangers it poses. Davidson points out that Brazil, which
is experiencing a similar commodity-driven currency appreciation bubble, is
aware of the dangers and is doing something about it: “The rising value of
the Brazilian real and the Australian dollar against the US dollar has had
a disastrous impact on both countries’ non-commodity export and import
competing industries. Brazil’s popular and largely economically successful
left-wing government led by President Lula da Silva is meeting the problem
head on. It has decided to impose a 2 per cent tax on all capital inflows to
stop the real appreciating further.” Of course, like any speculative bubble,
this has an end-game—and that’s when you think the rate rises have come
to an end, sell out and watch the $A crash for those who are still holding it.
Then the dollar (and Australian bank shares) will crash, and our economy
will have acted as a dollar pump for the hedge funds .

5.5 SHORT SELLING

To capitalize on the expectation that the price of a stock will decline, one
borrows shares of the stock (usually from a broker) and then sells the
stock—which is termed short selling . If the price declines, the borrower
buys them back at a reduced price and returns them to the broker at a
profit. If the price increases, the borrower loses money. The following cases
pinpoint bearish configurations that are inductive to short selling.

Case 5.5.1: Citrix Systems Shares of Citrix Systems (CTXS), a com-
pany that develops virtualization software that allows a single computer
to act like many “virtual” computers, soared 153% in 1999, after having
gains of 92% and 95% the previous two years. CTXS reached a high of
$122/share in early March 2000 and then collapsed as the high-tech bubble
burst.

Figure 5.5.1 presents the CTXS daily candlestick chart for the May–June
2000 period. At the beginning of June, eight of 11 security analysts covering
Citrix Systems had issued strong buy recommendations on the stock. In
contrast, the Dallas-based hedge fund Maverick Capital Eight bet against
CTXS and shorted 600,000 shares at $58/share the day following 6/5, a day
defining a bearish engulfing body; see the box. Within three days CTXS fell
to $41/share, at which time the Capital Eight short position jumped to 1.6
million shares. With the announcement of a bad second- quarter earnings
report, CTXS shares collapsed to $22 on 6/12. At this point, Capital Eight
covered their short positions, for a return of $38 million in less than a week.
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Figure 5.5.1 Daily candlestick chart for Citrix Systems (CTXS) during the May–June period of
2000. (Source: MSN Money)

Case 5.5.2: Online gambling businesses The background for this
case is discussed in Section 2.4. In anticipation of the Frist amendment to the
Safe Port Act (an amendment that banned online gambling), the Kynikos
Associates hedge fund shorted shares of the online gambling businesses
Sportingbet (SPBTF) and World Gaming (WGMGY) just prior to passage
of the Act on 10/2/06. Daily candlestick charts for SPBTF and WGMGY
are presented in Figures 5.5.2 and 5.5.3. There are no bearish patterns that
precede the drop in share prices on 10/2/06. On that day, share prices of
SPBTF and WGMGY plunged by 58% and 76%, respectively. The Kynikos
Associates’ short selling resulted in a financial killing.

Case 5.5.3: The pyrotechnics of Volkswagen share prices
Figure 5.5.4 presents a daily candlestick chart for Volkswagen (DE:VOW)
during the takeover of VW by Porsche. Volkswagen’s shares rose 147%
on October 27, 2008, after Porsche unexpectedly disclosed (on Sunday,
October 26) that through the use of derivatives (settled in cash rather than
shares) it had increased its stake in VW from 35% to 74.1%, sparking
outcry among investors, analysts, and corporate governance experts. The
ploy was made possible by Bafin, Germany’s financial regulator, who had
recently ruled that companies were not obliged to disclose such positions
where derivatives were settled in cash rather than shares . . . . The sudden
disclosure meant there was a free float of only 5.8% [of VW’s total shares],
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Figure 5.5.2 Daily candlestick chart of Sportingbet (SPBTF). Short positions were initiated by
Chanos just prior to passage of the Frist amendment on 10/2/06. (Source: MSN Money)

Figure 5.5.3 Daily candlestick chart of World Gaming (WGMGY). Short positions were initiated
by Chanos just prior to passage of the Frist amendment on 10/2/06. (Source: MSN Money)

sparking panic among hedge funds (Milne, 10/28/08). After the close of
business on 10/28/08, it was estimated that loses for some hedge funds
and banks could be as high as $38 billion (Milne and Burgess, 10/29/08).

Many had shorted VW shares just prior to the price increases on 10/27
and 10/28. Notice the bearish engulfing patterns the day prior to 10/19 and
10/20. As in the previous case, the candlestick chart gave no warning of
the October 27 price increase. For those with long positions on October 27,
the question is whether they were astute enough to take profits on the
following day.
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Figure 5.5.4 Daily candlestick chart of Volkswagen (DE:VOW) during takeover of VW by
Porsche. (Source: MSN Money)

In the aftermath of the VW debacle, an interesting question was posed.
According to German law, since the options were settled in cash, there was
no need to report the operation. . . . If the banks that sold the options did not
cover their position by owning the stock, they stand to lose more than 20bn
euros (assuming that the strike price of the options is 150 euros, which was
the stock price most of the year, and the options expire at the current price
of 400 euros). If, as is more likely, the banks own the shares, they will be
selling them around the maturity of the options. Undoubtedly, selling such a
large quantity of shares will have a significant impact on the price, bringing
it to the level before the run-up or even lower. In this scenario too, the
banks would have losses of tens of billions of euros . . . . The only scenario in
which the banks do not lose is if they have a secret agreement with Porsche
whereby the company promises to buy the shares right after the exercise of
the options at the same price. Of course, such an agreement must be made
public, even under lax German security laws (Santa Clara, 11/5/08).

5.6 TERRORIST ATTACKS AND THE MARKETS

Figures 5.6.1 and 5.6.2 present daily candlestick charts for American Air-
lines and the Dow Jones Index during the 9/11 period. Both figures display
bearish trends through 9/10. Chartist forecasts would have favored short



5.6 TERRORIST ATTACKS AND THE MARKETS 81

Figure 5.6.1 Daily candlestick chart for American Airlines (AMR) during the 9/11 period.
(Source: MSN Money)
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Figure 5.6.2 Daily candlestick chart for Dow Jones during the 9/11 period. (Source: MSN
Money)
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positions or purchases of near-term put options. The question under study by
the authorities was whether profits were made by those with foreknowledge
of 9/11 events.

In the month prior to 9/11, there were unusual discrepancies in the put
and call ratio—25 to 100 times normal—in the stock options of American
and United Airlines. But it was in the final few trading days before 9/11 that
unusual variances in activity occurred. Bloomberg’s Trade Book electronic
trading system showed that on the Thursday before the black Tuesday [9/11],
put option volume in UAL stock was nearly 100 times higher than normal . . . .
The National Commission on Terrorist Attacks Upon the United States (also
known as the “9/11 Commission”) investigated these rumors and found that
although some unusual (and initially seemingly suspicious) trading activity
did occur in the days prior to 9/11, it was all coincidentally innocuous and
not the result of insider trading by parties with foreknowledge of the 9/11
attacks (Snopes.com, 12/11/05).

The terrorist attack on Bombay, the financial center of India, began on
11/26/08 and ended on 11/28/08. Figure 5.6.3 presents a daily candlestick
chart for the Indian BSE Sensex Index (BSESN) during that period. The
bearish engulfing pattern on the first day of the attack disrupted the bullish
market upturn two days earlier.

Figure 5.6.4 presents an intraday, 5-minute candlestick chart for BSESN
corresponding to the day the crisis ended. The intraday chart indicates

Daily candlestick chart for the Indian BSE Sensex during the
terrorist attacks that began Nov26 and ended Nov28. 
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Figure 5.6.3 Daily candlestick chart for the Indian BSE Sensex Index during the terrorist
attacks in Bombay that began on November 26 and ended November 28. (Source: MSN
Money)
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Figure 5.6.4 Five-minute candlestick chart for the Indian BSE Sensex 30 Index on the day the
Bombay hostage crisis ended.

high-frequency trading opportunities, whereas the corresponding daily can-
dlestick indicates a neutral position. The intraday chart shows bearish pat-
terns in boxes 3 and 5 and bullish patterns in boxes 2 and 4.

From the perspective of Indian officials, the Bombay attack was not the
first terrorist atrocity and will not be the last. In fact, the more terrorist
attacks there are, the less impact they have. Given their impact on the mar-
kets, the terrorists would appear to have a convenient means of funding
their causes.

5.7 A HOLLYWOOD ROMANCE: SPIDERMAN AND
TINKERBELL

Shazam! On 8/28/09, Walt Disney Co. made a surprise $4 billion bid to
acquire Marvel Entertainment (MVL) and a range of characters that has
resonated with boys for more than 40 years . The purchase would be Disney’s
largest since the $7.6 billion acquisition of Pixar in 2006. Imagine Spidy,
Hulk , and Iron Man joining ranks with Mickey Mouse, Donald Duck, Snow
White, and Hannah Montana. Think of the sexual appeal and sexual urges
of the viewing audiences (Garrahan and Edgecliffe-Johnson, 9/1/09).

Following the bid, Disney’s shares closed down 2.98% while Marvel’s
shares jumped $10.35 to a record high of $49. Figures 5.7.1 and 5.7.2
present daily candlestick charts for MVL and Disney through August. Both
charts display bullish patterns prior to the bid; see the first three candle-
sticks in the MVL chart and the first two candlesticks in box 1 of the DSN
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Figure 5.7.1 Daily candlestick chart for MVL during August 2009, including the share price
increase following the Disney bid on 8/31/09. (Source: MSN Money)

Figure 5.7.2 Daily candlestick chart for Disney (DSN) during August 2009, including the share
price decrease following the Disney bid for MVL on 8/31/09. (Source: MSN Money)

1

2

Figure 5.7.3 Daily candlestick chart for CBS Corp (CBS), a Disney competitor during the
Disney bid for MVL. (Source: MSN Money)
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Figure 5.7.4 Daily candlestick chart for Time Warner (TWX), a Disney competitor, during the
Disney bid for MVL. (Source: MSN Money)

chart. Note that both patterns are below or nearly below the moving aver-
age band, an indication of short-term buying opportunities that resulted in
gains—albeit an unexpectedly large gain for MVL. The temporary drop in
the acquiring company is followed by a bullish pattern; see box 2 in the
DIS chart.

In detecting and reacting to bullish or bearish indicators, the active
trader should also track the movements of like-kind stocks for purposes
of confirmation. Like-kind stock issues tend to react in tandem. Daily can-
dlestick charts for two Disney competitors, CBS and TWX, are presented
in Figures 5.7.3 and 5.7.4. Both charts display the same bullish patterns (in
boxes 1 and 2) as DIS.

5.8 COPENHAGEN AND CLIMATE CHANGE: EXXON MOBILE
BUYS XTO ENERGY

There were many sequels to the Disney acquisition of Marvel Entertainment.
Exxon Mobil Corporation, the world’s largest publicly traded oil company,
announced on 12/14/09 that it struck a $41 billion all-stock deal to buy
Houston-based XTO Energy. The move marked a major bet on gas as
a cleaner-burning fuel than oil, as governments around the world looked
to Copenhagen climate-change talks the following week to stem the flow
of greenhouse gases into the atmosphere to combat global warming. The
acquisition, Exxon Mobil’s largest in a decade, sparked widespread investor
speculation that the energy sector could be poised for a new round of
consolidation as its biggest players vie for independent producers pinched
by low gas prices (Gelsi, 12/14/09).
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Figure 5.8.1 Daily candlestick chart for Exxon Mobil (XOM) during their acquisition of XTO on
12/7/2009. (Source: MSN Money)

Figure 5.8.2 Daily candlestick chart for XTO during their acquisition by XOM on 12/7/2009.
(Source: MSN Money)

Figures 5.8.1 and 5.8.2 present respective daily candlestick charts for
XOM and XTO during the period of the acquisition. The effect of the
acquisition announcement was to sharply increase the share price of XTO
and to depress the XOM share price. For XOM a strong bearish pattern
occurred earlier on the trading day before 12/7/09; see the box. For XOT a
bullish pattern occurred two trading days prior to the acquisition announce-
ment; see the box. Active traders who had been charting the two stocks
would have been in enviable positions with the 12/14/09 announcement.



6
Pseudo-Candlesticks for
Major League Baseball

6.1 THE 2008 WORLD SERIES: PHILADELPHIA VERSUS
TAMPA BAY

For Major League Baseball games, the money line takes the place of point
spreads and is given in terms of odds. The team wagered on has to win the
game whatever the final score. For example, in the final game of the 2008
World Series, the winning Philadelphia Phillies were 0.64 to 1 favorites to
beat Tampa Bay (i.e., every $1 bet on Philadelphia returned $0.64), which
implies that the probability was 0.61 that Philadelphia would win the game
(see Section 7.4). As with NBA and NFL games, a second line, denoted
by LTOT (i , t), is on the total runs scored by both teams. For Philadelphia
games, LTOT (i , t ) usually ranged from 7 to 9.

In the present application of candlestick charts to MLB, the illustrations
focus on GST (i , t) = TOT (i , t) − LTOT (i , t), the gambling shock
corresponding to the total line, and on the winning or losing margin
on a per game basis. For Philadelphia (PHL), Figure 6.1.1 charts the
last 32 games of the season, which concludes with their 14 postseason
games. The latter includes the first-round series win over Milwaukee
in four games, the National League championship series win over the
Dodgers in five games, and the World Series win over Tampa Bay in five
games.

Forecasting in Financial and Sports Gambling Markets: Adaptive Drift Modeling, By William S. Mallios
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Philadelphia Phillies: Last 32 games of 2008 season with first
round play-off winners over Milwaukee in 4 games, National

League Championship winners over Los Angeles in 5 games,
and World Series winners over Tampa Bay in 5 games 
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Figure 6.1.1 Candlestick chart for the 2008 Philadelphia Phillies in their last 31 games.

In Figure 6.1.1, GST (i = PHL, t) is abbreviated as GST (t). Of the 32
games depicted, Philadelphia lost the first two. A loss (win) in terms of the
score differential is indicated by the candlestick wick lying below (above)
the body. The bookmaker’s probability that Philadelphia would win or lose
is indicated by the white bodies. A probability of winning (losing) has a
white body of +10 (−10). Gray and black bodies represent, respectively,
the values of GST (t)> 0 and GDT (t) < 0.

The initial two losses were followed by a string of seven consecutive
wins. During the time period under study, a loss by Philadel-
phia was always followed by a string of at least three successive
wins—with one exception: Philadelphia losses in the 14th and 15th
games were followed by three successive wins. The implication is
that physiological–psychological–biological factors that accompa-
nied a Philadelphia loss provided motivation for wins in subsequent
games.

Note also that larger gray bodies [GST (t) � 0] tend to be followed by
smaller black bodies or at least smaller gray bodies. The implication is that
offensive games (resulting in a larger than expected number of runs) tended
to be followed by defensive games. In addition, Philadelphia won 78.5%
of the 14 play-off games in which their pitching tended to prevail—in the
sense that GST < 0 in 10 of the 14 games.
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Philadelphia won 77.7% of the last 18 games of the regular season,
compared to 15/27 = 55.6% of the games for which the money line
had an associated win probability for Philadelphia of greater than 0.5.
Conversely, the money line was correct in predicting only one of six games
for which the associated loss probability for Philadelphia was less than 0.5.
Given that the money line reflects the gambling public’s expectations,
the money line appeared to be largely irrational and the market largely
inefficient.

6.2 THE 2008 CHICAGO CUBS: VISIONS OF 1908 HEROICS

When the Bambino’s curse was lifted with Boston’s World Series win in
2003, the other reigning curse was in Chicago, where the Cubs hadn’t won
a World Series since 1908. (At the time, gas was selling for 20 cents a
gallon.) Moreover, the Cubs hadn’t won a National League Championship
since World War II ended in 1945. In a letter to conservative columnist
William F. Buckley, Jr., Ira Glasser, Executive Director of the American
Civil Liberties Union, asked: What explains 1945 as the dividing line in
Cubs history? Can it have something to do with the end of World War II?
Is the failure of the Cubs to win a National League pennant after 1945
somehow related to the failure of the U.S. Army to win a war after 1945?
(We came close in the Persian Gulf, but then so did the Cubs in 1969, 1984,
and 1989 .) I know this connection seems fanciful but no more so than the
relationship you once asserted between the drop in the S.A.T. scores and
the Supreme Court’s school prayer decision in Engel v . Vitale (Wall Street
Journal , April 24, 1994).

Now, in 2008, the Cubs and the Chicago White Sox were both in the
play-offs in the same year for the first time in over 100 years. Cubs fans,
in their persistent and admirable hopefulness, continually and confidently
proclaimed that this was the year that the team was going to take them
where no Cubs teams had in 100 years, despite the fact that, uh, no Cubs
team had taken them there in 100 years (Isaacson, 10/7/08).

In the same format as Figure 6.1.1, Figure 6.2.1 presents the final 31
games of the Cubs’ 2008 season. The pseudo-candlesticks portray the chart
of an underachieving team—one not likely to be a World Series winner.
The Cubs were favored to win in each of the first 20 games in the chart
and managed to win half of those games. They won only four of the last
11 remaining regular-season games, including the final three games against
the Dodgers in the first round of the play-offs.

The loss to the Dodgers could hardly have been surprising. Notice that
larger gray bodies (describing games where the total runs scored is relatively
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Chicago Cubs: Last 31 games of the 2008 season with first
round play-off loss to Los Angeles Dodgers in 3 games 
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Figure 6.2.1 Candlestick chart for the 2008 Chicago Cubs in their last 32 games.

large relative to the line) tend to be followed by a Chicago loss (denoted
by the candlestick wick extending below the body). The implication is
that the Cubs’ involvement in an offensive game (where more runs were
scored than expected) portended a loss in their following game. Perhaps
the overuse of Cub relief pitchers in offensive games is a reflection of
relief pitcher nonavailability in the subsequent game. This conjecture can
be evaluated by an analysis of pitcher performances, as described by the
analysis of Boston and Oakland pitchers in Sections 8.7 and 8.8.

6.3 A STRANGE SET OF COINCIDENCES: A PLATE UMPIRE’S
AFFINITY FOR A PITCHER

Some umpires can work their entire careers and never find themselves
behind the plate for a no-hitter. Eric Cooper has been the plate umpire
for three of them, including two by White Sox left-hander Mark Buehrle,
who pitched a perfect game on July 22, 2009 against the Tampa Bay Rays.
Cooper was also behind the plate for Buerhle’s 2007 no-hitter against the
Texas Rangers (and also Buerhle’s 6–0 shutout victory against the Los
Angeles Dodgers on June 17, 2005).

Mark Buehrle wears uniform number 56. Eric Cooper wears umpire
uniform number 56. The time of the game in Buerhle’s 2007 no-hitter was
2:03. The time of the game in Buehrle’s 2009 perfect game was 2:03. After
the game, we certainly talked about this being the second one with Buehrle,
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Cooper said. I thought about it more then than when I was actually working .
With the crowd buzzing on every pitch, was Cooper feeling the pressure?
I’m certainly aware of the situation, especially late in the game, just because
of the way the fans are reacting , he said. But it doesn’t differentiate how
I call the game. I have the same approach whether the score is 0–0 or 10–0
or whether there is a perfect game or no-hitter going. I try to call strikes
strikes and balls balls. Certainly late in the game, when the fans are on their
feet and they’re loud, they want every pitch to be a strike, and not every pitch
is a strike. That’s the time when you really need to kind of take a deep breath
and really focus on what’s going on and not get caught up in the moment
(De Luca, 7/24/07).

Cooper was also behind the plate for Boston Red Sox right-hander Hideo
Nomo’s no-hitter against the Baltimore Orioles on 4/6/01. The only other
active major league umpire to work multiple no-hitters is Tim Tschida, who
was behind the plate for Cubs’ ace Carlos Zambrano’s no-hitter against the
Houston Astros on 9/14/08 and for Nolan Ryan’s seventh career no-hitter,
pitching the Rangers past the Toronto Blue Jays on 5/1/91.





7
Single-Equation Adaptive

Drift Modeling

7.1 ADAPTIVE ARMA PROCESSES

The modeling procedures described in Section 4.3 are now generalized by
assuming that D(t) is generated by an ARMA(p, q) process with time-
varying coefficients:

D(t) = α(t)′D(t−) + γ(t)′ε(t−) + β(t)′x(t) + ε(t). (7.1.1)

The p autoregressive (AR) and q moving average (MA) variables and r
covariates are denoted, respectively, by the vectors D(t−),ε(t−), and
x(t), with respective coefficients α(t) = (α(i , t)), γ(t) = (γ(j , t)), and
β(t) = (β(k , t)). As in (4.3.5), the assumption is that the time-varying
coefficients are generated by lagged shocks (or moving average terms):

α(t) = α + Aε∗
α(t−) + δα(t),

γ(t) = γ + �ε∗
γ(t−) + δγ(t),

β(t) = β+Bε∗
β(t−) + δβ(t). (7.1.2)

A(p × qα), �(q × qγ), and C (r × qβ) are constant coefficient matrices for
the vectors ε∗

v(t−) = [ε∗
v (t − j )] for v = α, γ, β. Analogous to (4.3.3), the
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vector of model errors δ(t) = (δα(t)′, δγ(t)′,δβ(t)′)′ is assumed normally
distributed with E (δ(t)) = 0 and E (δ(t)δ(t)′) = Vδ(t); that is,

δ(t) : normal(0, Vδ(t)), (7.1.3)

where Vδ(t) is modeled in terms of GARCH-type processes in Section 7.5.
For gradual mean drift ,

ε∗
v (t − j ) = ε(t − j ).

For abrupt mean drift ,

ε∗
v (t − j ) = ε(t − j ) + α′

v v(t−) if |ε(t − j )|is sufficiently large, (7.1.4)

where αv is the coefficient vector of v(t−), a vector of variables distinct
from D(t−) and x(t), whose elements become significant in the particular
abrupt drift scenario. Elements of v(t−) usually include interactions that
tend to change the explanatory variables that appeared in the previous model
update.

Substitutions of expressions of time-varying coefficients in (7.1.2) into
(7.1.1) lead to a second-order reduced-form ARMA model:

D(t) = α′D(t−) + γ′ε(t−) + β′x(t) + D(t−)′Aε∗
α(t−)

+ ε(t−)′�ε∗
γ(t−) + x(t)′Bε∗

β(t−) + εR(t), (7.1.5)

where εR(t) is the reduced model error. When � = 0, (7.1.5) takes the
form of a bilinear model, while for � �= 0, model (7.1.5) is not invertible.
However, for fitted equations with � �= 0, the resulting model bias may
be inconsequential if the fitted model provides effective forecasts. (Perhaps
George Box’s remark that essentially all models are wrong, but some are
useful applies to biased models that provide effective forecasts.)

Analogous to (4.3.8), (7.1.5) could have resulted from any number of
time-varying coefficient models, not necessarily the one defined by (11.2.1)
and (7.1.2). Model validity regarding time-varying coefficients can be eval-
uated by fitting the individual drift equations in (7.1.2).

Regarding model validity, selected applications have shown some evi-
dence of significant three-factor interactions involving lagged shocks when
included in a third-order reduced-form equation. Such interactions, reflect-
ing possible direct effects of lagged distributional asymmetries, would result
if a bilinear process were specified for D(t) in (7.1.1):

D(t) = α(t)′D(t−) + γ(t)′ε(t−) + β(t)′x(t) + ε(t−)′Дαγ(t)D(t−)

+ ε(t−)′Дαβ(t)x(t) + ε(t). (7.1.6)
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The matrices Дαγ(t) and Дαβ(t) contain the time-varying coefficients of
bilinear terms. Another modeling variation would be to include interactions
between ε(t − j ) and elements of v(t−) in (7.1.4). These and other possi-
bilities can be evaluated by fitting the drift equations in addition to fitting
the reduced equation in (7.1.4).

7.2 VARIABLE SELECTION: IDENTIFYING THE REDUCED
MODEL

For the markets under study, identifying effective forecasting models is 95%
of the effort; estimating parameters of such models is 5% of the effort. Since
the number of possible predictor variables in (7.1.5) is usually excessive,
only a select few will be significant and retained in the process of iden-
tifying the reduced forecasting model. As such, suitable variable selection
procedures are required.

Model (7.1.5) is rewritten in simplified form as follows:

D(t) = f [w(t−), ε(t−);�] + εR(t). (7.2.1)

Here f [·] denotes a second-order linear function of w(t−) =
[D(t−)′, x(t)′, v(t−)]′, ε(t−) is interpreted to contain all nonredun-
dant elements of εα

∗(t−),ε∗
γ(t−), and ε∗

β(t−), and � is the vector of
coefficients. A heuristic variable selection approach is described as follows:

Step 1. Perform a factor analysis on the correlation matrix associated with
w(t−) (as illustrated in the analysis of a cointegrated time series in
Section 9.1) and retain factors associated with sufficiently large eigen-
values.

Step 2. Apply the stepwise regression variable selection procedure [as
available in SPSS (2008)] in the regression of D(t) on the factor scores
corresponding to the eigenvectors retained in step 1 and base the initial
fitted model on the significant factor scores.

Step 3. Obtain an initial estimate of ε(t−), say e0(t−), based on the resid-
uals corresponding to the fitted model in step 2.

Step 4. Apply stepwise regression once more in the regression of D(t)
on those factor scores identified in step 2, all elements of e0(t−), and
bilinear terms [or interactions between the factor scores and elements of
e0(t−)].

Step 5. If the significant factor scores identified in step 4 are not the same
as those identified in step 2, regress D(t) on the significant factor scores
resulting in step 4, in order to obtain new, revised residuals, say e1(t−).
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Step 6. This process is repeated until the significant factor scores obtained
in the absence of ε(t−) estimates are the same as the significant factor
scores obtained in the presence of ε(t−) estimates.

These six steps enable a tentative identification of significant variables
from among the factor scores, elements of ε(t−), and bilinear terms. This
process is often tedious. Unfortunately, there appears to be no optimal step-
wise procedure for selecting predictor variables among a large number of
possible variables in bilinear and higher-order ARMA-type models. Non-
linear estimation of parameters follows the model identification stage when
moving average and bilinear terms enter as predictors (see Section 7.3).

A second general approach to the selection of predictors is to forgo the
factor analysis on the correlation matrix associated with w(t−) and to scan
all variables in w(t−) directly through the stepwise procedure described
by the six steps in the first approach. As with the first approach, this pro-
cess of variable selection is completed when significant variables selected
from w(t−)—obtained in the absence of ε(t−) estimates and interactions
involving ε(t−) estimates—are the same as the significant variables in
w(t−) obtained in the presence of moving average and bilinear terms.

7.3 REDUCED MODEL ESTIMATION: SINGLE EQUATIONS

Given that significant predictors have been identified in (7.2.1), the model
to be fitted is written in linear form as

D = Z �∗ + εR. (7.3.1)

The vector D = (D(t)) contains n successive observations on D(t). The
matrix Z contains corresponding values of all significant first- and second-
order terms involving w(t−) and ε(t−);�∗ and εR denote, respectively,
the parameter vector and the reduced model error vector. Model (7.3.1) is
termed pseudolinear when Z includes moving average and/or bilinear terms
that must be estimated.

In minimizing ε′
RεR with respect to �∗, the nonlinear least squares pro-

cedure is linearized as follows. Let �∗
0 denote an initial estimate of �∗

obtained, say, through the procedure described in Section 7.2. Substitu-
tion of �∗

0 for �∗ in (7.3.1) yields D = Z �∗ + εR = Z0�
∗
0 + e R0; Z0

is an initial estimate of Z in the sense that elements of ε(t−) in Z are
replaced by e0(t−); eR0 is the vector of residuals corresponding to εR.
Since εR = Z0�

∗
0 − Z�∗ + eR0, we then approximate Z by Z0:

eR0 ≈ Z0(�
∗ − �∗

0) + εR. (7.3.2)
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Through (7.3.2), successive adjustments to (�∗ − �∗
0) may be obtained

through linear least squares by regressing eR0 on Z0. This process is contin-
ued until convergence occurs. If the initial estimate �∗

0 is not sufficiently
close to the nonlinear least squares estimate, say �∗∧, convergence may
be slow, or the process may not converge; see Box and Jenkins (1976)
for discussions on linearized nonlinear estimation of nondynamic ARMA
processes.

The fitted form of model (7.3.1) is written

D∧ = Z ∧�∗∧. (7.3.3)

Z is replaced by Z ∧ since elements of Z (t) containing ε(t−) have been
replaced by corresponding least squares estimates. If the model errors in
(7.3.1) are assumed to be identically and independently distributed with
zero expectation and constant variance σ2

εR , then, asymptotically,

variance(�∗∧) = [Z ∧′
Z ∧]−1σ2

εR . (7.3.4)

The constant variance assumption may be relaxed to allow for volatility
modeling.

7.4 REDUCED MODEL EMPIRICAL BAYESIAN ESTIMATION:
SINGLE EQUATIONS

In contrast to �∗∧ in (7.3.3), we now define an empirical Bayesian estimator
for �∗ in (7.3.1), say �B, for purposes of comparing, confirming, and/or
improving competing forecasts. If the forecasting inferences based �∗∧
and �B agree, decision making is reinforced. When inferences differ, a
reevaluation of the modeling assumptions and estimation procedures is in
order.

The estimation of �∗ in (7.3.1) is based on the most recent window of
n successive observations on D(t) that end, say, at time T ; that is, �∗∧
in (7.3.3) is based on the n observations D(T ), D(T − 1), . . . , D(T − n)

with the objective of forecasting D(T + 1). A distribution of �∗ estimators
is available from a systematic bootstrap sampling of N lagged windows
of D(t). Each lagged window contains n successive observations on D(t)
that end at times T − 1, T − 2, . . . , T − N . Moreover, each lagged window
provides an estimate of �∗. Let �∗∧

−1,�∗∧
−2,�∗∧

−3, . . . , �∗∧
−N; denote the N

estimates of �∗. The unweighted average of these N estimates,

�∼ = �i�
∗∧
−i /N, (7.4.1)
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is an empirical estimate of the mean of the prior distribution of �. The
estimated variance–covariance estimate of �∼ is given by

S�∼ = �i (�
∗∧
−i − �∼)(�∧

−i − �∼)′/(N − 1). (7.4.2)

It is assumed that, approximately,

�∼ : (�∗, ��∼); (7.4.3)

that is, E (�∼) = �∗, while variance(�∼) = ��∼ is estimated by S�∼.
With I denoting the identity matrix, let X ′ = [Z ∧′

, I ], y′ = [D′, �′∼] and
assume that εR in (7.3.1) and �∼ in (7.4.1) are distributed independently.
Then, for

y = X�∗ + δ,

where δ denotes a vector of model errors,

y : [X�∗,�B] (7.4.4)

and

�B =



I σ2
εR 0

0 ��∼)


 . (7.4.5)

Minimizing δ′�−1
B δ yields the following empirical Bayesian estimator

for �∗:

�B = [X′�−1
B X ]−1X ′�−1

B y

= {[��∼]−1 + (Z ∧′
Z ∧)/σ2

εR}−1[��∼]−1�∼

+ (Z ∧′
Z ∧)/σ2

εR�∧], (7.4.6)

variance(�B) = {[��∼]−1 + (Z ∧′
Z ∧)/σ2

εR}−1. (7.4.7)

See Zellner (1971) for a derivation of (7.4.6)–(7.4.7) through maximum
likelihood estimation.

In contrast to the forecast D(t)∧ = Z (t)∧′
�∗∧ in (7.3.3), a second fore-

cast based on (7.4.6) for D(t) is denoted by

D(t)∧B = Z (t)∧
′
�B. (7.4.8)
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Decision making is reinforced if inferences based on (7.3.3) and (7.4.8)
are the same: for example, both forecasts indicate that price shares will
drop significantly in the forthcoming week. A red flag is signaled when
forecasting inferences differ. Although many reasons can be given for such
discrepancies, one should be emphasized regarding (7.4.8). Since model
building is adaptive, changes in model structure may occur over time, par-
ticularly during periods of abrupt drift. The Bayesian estimator predictors
used in the reduced model for D(T )∧ are the same as those used in the
models for D(T − 1)∧, D(T − 2)∧, and so on. However, allowances for
changes in predictors variables over time indicate that whereas all coeffi-
cients of �∗∧ are significant, elements of �−1

∗∧, �∗∧
−2, �∗∧

−3, . . . , �∗∧
−N may

be of greater or lesser significance and may deviate in value considerably
from corresponding elements of �∗∧. Put simply, a model that is updated
through time T might not be the same as models that are updated earlier.
If so, the Bayesian estimator �B may be of only marginal value.

In the markets under study, another class of forecasts is probably of
greater importance than the Bayesian forecasts. These include those defined
by the updated, adaptive forecasting models for past forecasts, say for
D(T − 1), D(T − 2), and D(T − 3), if, for example, each of the forecast-
ing models D(T − 1)∧, D(T − 2)∧, and D(T − 3)∧ can be used, along with
D(T )∧, to forecast D(T + 1) simply by updating the predictor variables,
not the coefficients. If D(T + 1)∧ and updates of most recent forecasting
models lead to the same inferences regarding D(T + 1), decision making is
particularly enhanced. This situation is illustrated in forthcoming modeling
exercises in both financial and sports gambling markets.

7.5 SINGLE-EQUATION VOLATILITY MODELING: ADAPTIVE
GARCH PROCESSES

Volatility modeling concepts, introduced in Section 4.4, are now general-
ized with particular emphasis on scenarios of abrupt mean drift. As a first
step, suppose that eR(t)2, the residual corresponding to εR(t) in (7.1.5), is
generated by a GARCH(p, q) process:

eR(t)2 = µ + ϕ′e2
R(t−) + ψ′�(t−) + �(t), (7.5.1)

where ϕ and ψ represent the respective effects of e2
R(t−) = eR(t − j )2 and

�(t−) = �(t − j ∗), and �(t) denotes the model error. A possible short-
coming of model (7.5.1) is that if volatility is time varying, the volatility
model may also be time varying. To address this shortcoming, we allow
for time varying coefficients generated in terms of elements of �(t−); for
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example,

eR(t)2 = µ(t) + ϕ(t)′e2
R(t−) + ψ(t)′�(t−) + �(t), (7.5.2)

where

µ(t) = µ + µ1
′�(t−) + δµ(t),

ϕ(t) = ϕ + ϕ′
1�(t−) + δϕ(t), (7.5.3)

ψ(t) = ψ + ψ′
1�(t−) + δψ(t),

where µ1, ϕ1, and ψ1 are coefficient vectors denoting the effects of elements
of �(t). Substituting expressions for µ(t), ϕ(t), and ψ(t) in (7.5.3) into
(7.5.2), we have a reduced, second-order GARCH model:

eR(t)2 = µ + ϕ′e2
R(t−) + ψ′�(t−) + µ1

′�(t−) + e2
R(t−)′ϕ1�(t−)

+ �(t−)′ψ1�(t−) + �R(t). (7.5.4)

Alternative modeling schemes include replacing model (7.5.2) with a bilin-
ear GARCH model [which allows for the effects of interactions between
elements of e2

R(t−) and �(t−) on eR(t)2] and/or generating time-varying
coefficients in terms of ARMA or bilinear processes. Under each modeling
scheme, estimations procedures are described in Section 7.3. As discussed
in Section 4.4, the foregoing volatility forecasting procedures may be mis-
leading when the model for D(t) is specified incorrectly; see Section 9.4
for model diagnostics and alternative modeling procedures.

7.6 MODELING MONETARY GROWTH DATA

Kim and Nelson (1989) present an analysis of U.S. quarterly data
(1964:1–1985:4) on monetary growth. The following time-varying
parameter model was applied under the assumption that regression
coefficients follow a random walk:

DM 1(t) = β0(t) + β1(t)DINT (t − 1) + β2(t)INF (t − 1)

+ β3(t)SURP(t − 1) + β4(t)DM1(t − 1) + ε(t), (7.6.1)

βi (t) = βi (t − 1) + δi (t), i = 0, 1, . . . , 4, (7.6.2)

where DM1, DINT, INF , and SURP denote, respectively, the change in M1
growth rate, the change in the interest rates on three-month Treasury bills,
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inflation measured by the Consumer Price Index, and the full employment
budget surplus. Kalman filtering estimation (Schneider, 1988) is applied in
obtaining the following variance estimates for ε(t) and δi (t):

s2
ε = 0.126284, s20

δ0 = 0.012133, s2
δ1 = 0.000896, s2

δ2 = 0.074544,

s2
δ3 = 0.000683, and s2

δ4 = 0.001184. (7.6.3)

Assuming constant coefficients and applying ordinary least squares estima-
tion in (7.6.1), we have

DM 1∧(t) = 0.496 + 0.3003.71DINT (t − 1) − 0.4847.18INF (t − 1)

+ 0.1742.44SURP(t − 1) − 0.6943.80DM 1(t − 1). (7.6.4)

Here DM 1∧(t) denotes the predicted value of DM1 (t); the coefficient
subscripts are corresponding values of |t |, where t denotes Student’s t
statistic.

As in (7.1.2), the time-varying coefficients in (7.6.1) are assumed gen-
erated in terms of lagged shocks:

βi (t) = βi + βi1ε(t − 1) + · · · + βiqε(t − q) + δi (t). (7.6.5)

Substitution of (7.6.5) into (7.6.1) yields a reduced equation with numerous
second-order terms. Following the variable selection and reduced model
estimation procedures discussed in Sections 7.2 and 7.3, we obtain the
following bilinear equation:

DM 1∧(t) = 0.703 + 0.3834.69DINT (t − 1) − 0.5388.26INF (t − 1)

− 0.5052.96DM 1(t − 1) + 0.2213.30INF (t − 1)eR(t − 1)

+ 0.0662.42INF (t − 1)eR(t − 2), (7.6.6)

where eR(t − j ) denotes the estimate of ε(t − j ). Note that SURP(t − 1)

in (7.6.1) has been replaced by the interactions INF (t − 1)eR(t − 1) and
INF (t − 1)eR(t − 2) in (7.6.6), which may explain the relatively large value
of the INF (t − 1) variance estimate (s2

δ2) in (7.6.3).
Finally, (7.6.6) is examined for time-varying variation in terms of

GARCH modeling, with the following result:

eR(t)2∧ = 0.141 + 0.2102.26eR(t − 1)2 + 0.3493.84eR(t − 3)2. (7.6.7)

For the data under study, there is no evidence of time-varying coefficients
for the volatility model.
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7.7 MODELING GNP DEFLATOR GROWTH

In introducing GARCH processes, Bollerslev (1986) models quarterly data
(1948.2–1983.4) on the rate of growth in the implicit GNP deflator in the
United States. With GD(t) denoting the implicit price deflator for GNP,
u(t) = 100 loge(GD(t)/GD(t − 1)) is modeled in terms of an AR(4) pro-
cess complemented by a GARCH(1, 1) process:

u∧(t) = 0.141 + 0.4335.34u(t − 1)0 + 0.2292.08u(t − 2)

+ 0.3494.33u(t − 3) − 0.1621.56u(t − 4); (7.7.1)

eR(t)2∧ = 0.007 + 0.1351.93eR(t − 1)2 + 0.82912.2E [eR(t − 1)2].

(7.7.2)

Note: In Bollerslev’s analysis, the GARCH(1, 1) equation, given by

Ec(eR(t)2) = µ + ϕe2
R(t − 1) + ψ{e2

R(t − 1) − Ec[e2
R(t − 1)]},

is written

Ec(eR(t)2) = µ + [ϕ + ψ][e2
R(t − 1)] − ψEc[e2

R(t − 1)],

where Ec denotes conditional expectation.
Analysis of comparable quarterly data from 1955.1 to 1988.4 gives the

following result:

u∧(t) = 0.0020 + 0.3654.23u(t − 1)0 + 0.3183.62u(t − 2)

+ 0.1832.19u(t − 3), (7.7.3)

Ec(eR(t)2) = 0.2(10−4) + 0.2332.67eR(t − 3)2. (7.7.4)

Comparison of (7.7.3) with (7.7.1) indicates changes in the u(t) model
between the two overlapping time segments, at least when the u(t) models
are limited to first-order AR processes with nonvarying coefficients. Given
a lack of justification for nondynamic modeling, the model structure is
reevaluated to include consideration of ARMA-type processes for u(t) with
time-varying coefficients.

Variable selection procedures (discussed in Section 7.2) uncovered sig-
nificant effects of three-factor interactions involving lagged shocks. If such
interactions are credible, several modeling options are indicated. For the
option that is chosen, u(t) is conjectured to follow an ARMA process with
time-varying coefficients generated in terms of second-order MA processes.
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(For the latter processes, the first-order MA processes were augmented to
include interactions between the lagged shocks.) The following third-order
reduced-form equation resulted from the variable selection and estimation
procedures:

u∧(t) = 0.002 + 0.3704.31u(t − 1) + 0.3403.87u(t − 2) + 0.1691.97u(t − 3)

+ 0.5842.85e(t − 3)e(t − 5) − 1.332.21e(t − 1)e(t − 2)e(t − 3).

(7.7.5)

In view of the second- and third-order interactions in (7.5.5), additional
studies are required to evaluate forecasts based on fitted models that are
biased.

The accompanying GARCH modeling residuals show no evidence of
heteroskedasticity. One possible implication of model (7.7.5) is that the
effect of e(t − 3)2 in model (7.7.4) reflects the direct effect of the two- and
three-factor shock interactions in model (7.7.5).





8
Single-Equation Modeling:

Sports Gambling Markets

8.1 EFFECTS OF INTERACTIVE GAMBLING SHOCKS

In this book emphasis is on adaptive drift modeling in single time series and
in simultaneous time series that are cointegrated. Earlier (Mallios, 2000), the
writer ignored cointegration and focused on modeling single time series in
the markets under study. This was not a serious omission for modeling game
outcomes since lagged gambling shocks for each of the opposing teams have
significant effects on game outcomes and also partially reflect the effects
of cointegration when an equation is part of a system of equations. In this
chapter we illustrate adaptive drift modeling in single equations prior to its
application to cointegrated series in Chapters 9 and 10.

For modeling outcomes in sports gambling markets, known gambling
shocks should always be distinguished from unknown statistical shocks.
Recall from Section 1.2 that the gambling shock for the difference in
points scored by opposing teams is given by GSD = (difference in scores)
− (the line on the difference), while the gambling shock for the total points
scored is given by GST = (total points scored by both teams) − (the line
on the total).

Since the known lagged gambling shocks are correlated with the
unknown lagged statistical shocks, the former may largely (although not
entirely) reflect the effects of the latter in single-equation sports forecasting
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models. As such, in the initial stages of model building, the models (7.1.1)
and (7.1.2) may be simplified by approximating the MA terms (the lagged
statistical shocks) in terms of known lagged gambling shocks. Specifically,
ε(t−) in (7.1.1)–(7.1.2) is replaced by GSD(t−) and GST(t):

E [D(t)] ≈ αD(t)′D(t−) + γGSD(t)′GSD(t−)

+ γGST(t)′GST(t−) + β(t)′x(t), (8.1.1)

E [ψ(t)] ≈ ψ + ψ′
1GSD(t−) + ψ′

2GST(t−). (8.1.2)

The coefficient vectors ψ(t), ψ, ψ1, and,ψ2 are each replaced, in
turn, by ψ = αD, γGSD, γGST, and β [i.e., E [αD(t)] ≈ αD+α′

D1GSD(t−)+
α′

D2GST(t−), E [γGSD(t)] ≈ γGSD + γ′
GSD1GSD(t−) + γ′

GSD2GST(t−),
etc.]. The symbol ≈ denotes approximated by since added effects of
lagged statistical shocks have been excluded.

The reduced equation for E [D(t)] is obtained by substituting coefficient
expressions for coefficients in (8.1.2) into (8.1.1):

E [DR(t)] ≈ α′D(t−) + γ′
GSDGSD(t−) + γ′

GSTGST(t−)

+ β′x(t) + w1(t−)′M w2(t−). (8.1.3)

Effects of cross products between elements of w1(t−)′ = (GSD(t−)′,
GST(t−)′) and elements of w2(t−) = (D(t−)′, GSD(t−)′, GST(t−)′)′ are
represented by elements of the matrix M . All variables on the right-hand
side of (8.1.3) are known and can be scanned for significance as in
step 2 of Section 7.2. The entry of significant predictors involving lagged
gambling shocks indicates a modeling simplification relative to financial
modeling since they are known and partially reflect the unknown lagged
statistical shocks. Added effects of the latter shocks may then be recovered
through steps 3 through 6 in Section 7.2. Following model identification,
the nonlinear estimation procedure in Section 7.3 is then applied if lagged
statistical shocks and bilinear terms are found to be significant.

8.2 END OF AN ERA: MODELING PROFILE OF THE 1988–1989
LOS ANGELES LAKERS

The 1980s were the Los Angeles Lakers’ (LAL) decade. The time had
come for Kareem Abdul-Jabbar’s farewell. Would LAL “three-peat” as
NBA champions? In the Western Conference playoffs, LAL swept Portland,
Seattle, and then Phoenix. In the Eastern Conference, the Detroit Pistons
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swept Boston, Milwaukee, and then dismembered the Chicago Bulls in six
games.

Los Angeles Times sportswriter Mike Downey provided LAL coach Pat
Riley with a scouting report on Detroit:

• Dennis Rodman, alias “the worm.” Leading characteristics: Great
rebounder, serious defender, and major showboat.

• William (Bill ) Laimbeer, alias unprintable. Leading characteristics: Thug,
gangster, cheap shot artist.

• Isiah Lord Thomas III, alias “Zeke.” Leading characteristics: Perennial
all-star, explosive scorer. Has a tendency to kiss certain opponents on face
before tipoff.

• Joe Dumars III, no alias. Leading characteristics: Steady as guards come,
underrated in every phase of the game. Gentleman on and off court.

• Vincent Johnson, alias V.J. Leading characteristics: Shoots lights out. Shots
have no arc whatsoever.

• If officials permit Pistons to play as physically as they did against Bulls
without calling fouls, the Lakers will find themselves in a war. . . . A Pis-
ton’s idea of no-harm, no-foul is if opponent regains consciousness within
5 minutes. (Los Angeles Times, June 4, 1989)

This was the group that Kareem Abdul-Jabbar, Magic Johnson, James
Worthy, Michael Cooper, and Byron Scott had to face. It was the Hollywood
good guys versus the Motor City bad guys. And, of course, the good guys
lost. Fifteen years later, a similar scenario was repeated when Detroit ended
the Shaquille O’Neal–Kobe Bryant LAL saga in the 2004 NBA finals.

The LAL forecasting model for the 1989 play-offs was based on regular-
season games for 1988–1989 and 1987–1988 games for both the regular
season and play-offs. By play-off time, the LAL forecasting model had
stabilized, as was evidenced by only marginal changes in updates of the
reduced forecasting equation between successive play-off games. In the
model (8.1.1)–(8.1.2), effects of GST(t−) were excluded since lines on
point totals were not easily accessible (at least not through the news media)
in the late 1980s. Based on the modeling procedure discussed in Section 8.1,
forecasting equation (8.2.1) is based on nonlinear, weighted least squares
estimation. Relative to the line on the difference, the equation provided
correct forecasts in 75 % of the LAL play-off games.

D∧(i = LAL, t) = 0.9777.47LD(i , t) − 1.1263.23WS (i ∗, t∗)

+ 0.3783.41H (i , t)GSD(i ∗, t−1)

+ 0.0432.25LD(i ∗, t∗−1)GSD(i ∗, t∗−2)
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+ 0.0252.15GSD(i ∗, t∗−1)GSD(i ∗, t∗−2)

+ 0.0202.35H (i , t)GSD(i ∗, t∗−1)eR(i , t−2)∧. (8.2.1)

Individual variables are defined as follows:

D∧(i = LAL, t) = difference predicted in final score between LAL
(team i )and its opponent(team i ∗)in what was
game t for LAL and game t∗for its opponent

LD(i = LAL, t) = line on the difference for the Lakers

WS (i ∗, t∗) = number of consecutive games won or lost by
LA’s opponent just prior to the present game

H (i = LAL, t) = 1if a home game for LAL and−1if an away game

GSD(i = LAL, t − k) = lagged gambling shock on the score difference
for LAL in game t − k , k > 0

GSD(i ∗, t∗ − k) = lagged gambling shock on the difference for the
LAL opponent in game t∗ − k

e(i = LAL, t − k)∧ = estimated statistical shock for LAL in game t − k

The coefficient of L(i = LAL, t) is nearly 1, so that LAL forecasts
amount to adjustments of the line based mostly on lagged shock interactions
(which indicate that past volatility affects current expectations directly).
The negative coefficient of WS (i ∗, t∗) indicates that D∧(i = LAL, t) is
reduced (increased) by 1.126 points for each game of LA opponent’s win-
ning (losing) streak. Collecting terms involving GSD(i ∗, t∗−2) and sub-
stituting D(i ∗, t∗−1) − GSD(i ∗, t∗−1) for L(i ∗, t∗−1), we have a stability
condition: 0.043D(i ∗, t∗−1) − 0.018GSD(i ∗, t∗−1)GSD(i ∗, t∗−2); that is,
an opponent coming off a win [D(i ∗, t∗−1)> 0] tended to enhance LAL
performance unless the opponent was on a roll [GSD(i ∗, t∗−1)> 0 and
GSD(i ∗, t∗−2)> 0].

Note that the lagged statistical shock eR(i = LAL, t−2)∧, as part of a
three-factor interaction, is delayed, in the sense that eR(i = LAL, t−2)∧
enters as a predictor in place of eR(i = LAL, t−1)∧. In explanation, recall
that a statistical shock is a deviation from what should have happened ,
which usually differs from the line and tends to reflect a deviation from
the coach’s perception of how his team should have performed. With so
many games in the NBA season, the coach’s means of effecting change
in response to his team’s performance in a particular game may not be
immediate but, instead, may have delayed effects.
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Collecting terms involving H (i = LAL, t) interactions, we have

H (i = LAL, t)GSD(i ∗, t−1)[0.378 + 0.020eR(i = LAL, t−2)∧].

At home [H (i = LAL, t) = 1], where the Lakers lost very few games,
their performance was enhanced when their opponent’s previous outing was
better than expected [GSD(i ∗, t−1)> 0] and their own past performance
was better than expected [eR(i = LAL, t−2)∧ > 0]. On the road, where peak
performance is more difficult to maintain, these effects are often negative.

As will be illustrated by the analyses results in Chapter 10, current-day
modeling profiles of NBA teams differ from those of 20 years ago. During
the Pat Riley years in Los Angeles, lagged gambling shocks tended to
dominate modeling results for Western Conference teams, whose run-and-
shoot offenses were geared to produce fan-pleasing, high-scoring games.
With such volatility, the line often went by the wayside. As such, gambling
shocks were often large and their effects in subsequent games tended to be
more pronounced, as reflected in equation (8.2.1).

During the LAL reign in the 1980s, volatility modeling in financial mar-
kets was in its developmental stages and applications of such modeling did
not appear in the literature on sports modeling. However, it was soon rec-
ognized that volatility in financial markets provided a gambling venue for
greater profits—accompanied by commensurate risk. This sparked evolu-
tionary changes in the sports gambling markets in terms of spread betting.

8.3 SPREAD BETTING

Spread betting provides greater profit opportunities, accompanied by greater
risks. In the mid-1970s, the Investors’ Gold Index (later the IG Index) was
founded to offer spread betting on gold prices. By 1985 the transition was
to sports spread betting in terms of horse racing. For example, suppose you
think that horse A is far superior to horse B. Your bookmaker quotes you
odds of 2 lengths at 3 lengths . You place a buy at $100 per length. Even
though both horse A and horse B may finish out of the money, suppose that
horse A finishes 8 lengths ahead of horse B. You win 8 less 3 = 4($100) =
$400; that is, for every whole length greater than 3 lengths that horse A
beats horse B, you receive $100. However, suppose that horse B beats
horse A by 5 lengths. Then you lose 5 less 2 = 3($100) = $300; that is,
for every whole length greater than 2 lengths that horse B beats horse A,
you lose $100.

The bookmaker’s spread line on the total number of points scored in
the New York Giants vs. New England Patriots title game was [52 to 55].



110 SINGLE-EQUATION MODELING: SPORTS GAMBLING MARKETS

Your choices: (1) Buy total points at 55. (To win, the total points must
exceed 55.) (2) Sell total points at 52. (To win, the total points must be less
than 52.) The final score: Giants 17, Patriots 14 = 31 total points. If you
sold at 52 for $100, you won (52−31)($100) = $2100. If you bought at 55
for $100, you lost (58−31)($100) = $2700. Risk assessment is obviously
of greater importance in spread betting than in conventional betting since
losses are not fixed.

Risk assessment, discussed in Chapter 11, may be approached as follows.
For a particular game of interest, let T (t) and LT (t) denote, respectively,
the total points scored by opposing teams and the line on the total points
scored. The procedure for modeling T(t) with time-varying coefficients is
the same as that given for modeling D(t) in (8.1.1)–(8.1.3).

Let T (t) = E [T (t)] + εT (t) = T (t)∧ + eT (t), where E [T (t)] denotes the
expected value of T , ε(t) the model error, T (t)∧ the forecast, and eT (t)
the residual corresponding to εT (t). Volatility modeling for eT (t)2 may be
approached through either (7.5.1) or (7.5.4), whichever is appropriate.

Let eT (t)2∧ denote the variance forecast based on either (7.5.1) or (7.5.4).
Then T (t)∧ and eT (t)2∧ are estimates of the first two moments of some
suitable probability distribution for T (t) ≥ 0. Of the nonsymmetric gamma
and exponential-type distributions that are probably suitable, the following
Weibull density function is perhaps the most convenient to apply:

f (T ) = cb−cT c−1 exp[−(x/b)c], (8.3.1)

where T (t) is replaced by T . The cumulative Weibull distribution is given
by

P(T < T0) = 1 − exp[−(T0/b)c], (8.3.2)

E (T ) = (b/c)�(1/c); variance (T )

= (b2/c){2�(2/c) − (1/c)[�(1/c)]2}. (8.3.3)

Equating the estimates T (t)∧ and eT (t)2∧ to the expressions for E (T ) and
variance(T ) in (8.3.3), we obtain method-of-moments estimates of b and
c, say, b∧ and c∧. Substituting these estimates into (8.3.2), we may esti-
mate the probabilities in (8.3.2), which are then used to evaluate the risks
associated with either spread betting or conventional betting.

For the Giants vs. Patriots spread of [52 to 55], the critical tail probabili-
ties used to model risk are given by P(T (t)> 55) and P(T (t) < 52). These
tail probabilities are inversely related to risk; that is, the higher a particular
tail probability, the lower the risk and the greater the amount of the wager.
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8.4 MODELING PROFILE OF A DREAM TEAM: THE 1989–1990
SAN FRANCISCO 49ERS

In Super Bowl XXIV, the 1989–1990 49ers were seeking consecutive titles.
The opponent was Denver. Bill Walsh had retired the previous year follow-
ing the 49ers Super Bowl win over Cincinnati. Rookie coach George Seifert
proceeded to guide the 49ers to a 14–2 season. The 49ers offense was led
by Joe Montana (NFL most valuable player award and offensive player
of the year award), wide receivers Jerry Rice and John Taylor, tight end
Bret Jones, and running backs Roger Craig and Tom Rathman. Even backup
quarterback Steve Young had an exceptional year. The 49ers defense, ranked
third in the league, was led by defensive ends Charles Haley and Pierce
Holt, linebackers Kenna Turner, Matt Millen, and Bill Romanowski, safety
Ronnie Lott, and defensive backs Eric Wright and Chet Brooks.

Denver was trying to avoid becoming the second team, after the Min-
nesota Vikings, to lose a fourth Super Bowl. It wasn’t to be. The 49ers won
55–10. Dan Reeves, coach of the losing Bronchos, commented: We made
some people, some experts, awful smart today , alluding to the point spread
that favored the 49ers by 11.5 to 12 points.

The 49er forecasting model was based on the same procedure used in
obtaining the Los Angeles Laker model in Section 8.2. Forecasts were
based on the 1988–1989 and 1989–1990 season; the estimation procedure
employed nonlinear weighted least squares [as in LAL model (8.2.1)] to
account for the increased importance of more recent games in their effect
on subsequent games. For the 1989–1990 season, weekly updates of the
49er model provided exceptionally reliable forecasts, beating the line on
the difference in 84% of the games. (On average, drift model forecasts in
sports are reliable about 66% of the time, although forecast reliability is
team specific. Some teams are far more predictable than others.)

Contributing to the forecasting effectiveness is the fact that weekly
updates remained remarkably stable over the course of the season, dating
back to the 1988–1989 season. As a summary of model updates, the
year-end 49er forecasting model for D(i = SF, t) is as follows:

D∧(i = SF, t) = 0.0443.80LD(i , t)D(i , i ∗, tp)

− 0.2865.82LD(i , t)GSD(i , t−1)

+ 1.05012.2L(i , t)WC (i , t)

+ 0.1922.83WT (i , t)GSD(i , t−1)

+ 0.2293.88WT (i ∗, t∗)GSD(i ∗, t∗−1). (8.4.1)
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Notice the absence of lagged statistical shocks. The implication is that
they are largely reflected by the lagged gambling shocks.

Individual variables, in order of their appearance on the left-hand side
of (8.4.2), are identified as follows:

LD(i = SF, t) = line on the difference

D(i = SF, i ∗, tp) = outcome of the game between the 49ers
and their opponent in their previous
encounter

GSD(i = SF, t−1) = gambling shock for the 49ers
in their previous game

WC (i = SF, t) = number of consecutive 49er
wins just prior to game t

WT (i = SF, t) and WT (i ∗, t∗) = number of wins in their previous five
games for the 49ers and their opponent,
respectively

GSD(i ∗, t∗−1) = gambling shock for the 49ers’
opponent in their previous game

Notice that contrary to Los Angeles Laker model (8.2.1), no lagged statisti-
cal shocks entered the forecasting model for the 49ers. For single-equation
sports modeling, the lack of MA terms in sports usually reflects exceptional
forecasting effectiveness (since the gambling shocks reflect the statistical
shocks).

During the 1989–1990, the 49ers were favored in all games except at
Philadelphia (in the third week), where they were 1.5-point underdogs. (The
49ers won 38–20.) The 49ers were least favored (by 1 point) against the
Los Angeles Rams in an away game. (The 49ers won 30–27.) These two
games illustrate exceptions to the more typical modeling result that the
lagged gambling shock GSD(i = SF, t−1) affects D(i = SF, t) negatively.
Collecting terms with GSD(i = SF, t−1) on the right-hand side of (8.4.2),
we have

−GSD(i = SF, t−1)[0.286LD(i = SF, t) − 0.192WT (i = SF, t)].

For the 49ers, the quantity in brackets was always positive [and hence the
effect of G(i = SF, t−1) on D(i = SF, t) is negative] except for the two
games just mentioned. The implication is that a better/worse-than-expected
49er performance in week t−1 [in terms of a positive/negative value of
GSD(i = SF, t−1)] tended to degrade/improve 49er performance in week
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t [in terms of the negative coefficient of G(i = SF, t−1)] unless the 49ers
were underdogs or slight favorites in week t . The 49ers tended to forgo
the letdown associated with a better-than-expected win when their next
opponent was expected to be formidable.

Note that the positive effect of the interaction WT (i ∗, t∗)GSD(i ∗, t∗−1)

on D(i = SF, t) indicates an enhanced 49er performance when they played a
winning team [as indicated by a larger value of WT (i ∗, t∗)] that performed
better than expected the previous week [as indicated by a positive value
of G(i ∗, t∗−1)]. Positive effects of the interactions LD(i = SF, t)D(i =
SF, i ∗, tp) and LD(i = SF, t)WC (i = SF, t) on D(i = SF, t) indicate that
the point spread should have been increased when the 49ers had beaten
their opponent in their previous encounter or when they were in the midst
of a winning streak.

The 51–10 Denver loss to the 49ers capped a season of extremes, many of
which were suitable for spread betting, discussed in Section 8.3. Regarding
the other 1989–1990 play-off teams, Pittsburgh started the season by los-
ing 51–0 to Cleveland, then 41–10 to Cincinnati. Following these losses,
Pittsburgh coach Chuck Noll regrouped the Steelers, made the play-offs,
beat Houston, and then lost by 1 point to Denver. Cincinnati faded after
their Super Bowl appearance a year earlier. However, in week 15, Cincin-
nati coach Sam Wynche made a statement to the black-bedecked Houston
coach Jerry Glanville—his Bengels trashed the Oilers 61–7. The Los Ange-
les Rams (now the St. Louis Rams) started the season strong, faded, and then
finished strong. It was to be the last successful season for John Robinson
as Rams coach.

In round one of the play-offs, the 3-point underdog Rams beat Philadel-
phia 21–7 in a soggy Veterans Stadium. Ram quarterback Jim Everett in a
postgame interview stated: We’re a better . . . team because we had to put up
with a lot of pregame abuse. . . . I guess that comes with playing Philly and
[Philadelphia head coach] Buddy Ryan . Next, the 5.5-point underdog Rams
(with a defense that finished the regular season 21st in the league) beat
Bill Parcell’s favored Giants 19–13 in New York. (In winning the Super
Bowl the following year, Parcell was to become the first coach to take three
different teams to the finale.) The Cinderella Rams (a 7.5-point underdog)
reached midnight against the 49ers 41–3—as did Minnesota and Denver
in subsequent games.

8.5 MAJOR LEAGUE BASEBALL: A DATA-INTENSIVE GAME

Formula 1 racing is the most data intensive of all sports. Cars transmit
between 15 and 20 gigabytes of data on everything from tire wear to
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hydraulic pressures and down draft during the two hours or so that a race
lasts. Major League Baseball is probably the second-most data-intensive
sport. As such, MLB games are more amenable to effective forecasting
than are NBA and NFL games, assuming that data on appropriate variables
are available and are analyzed properly.

The odds provided by the money line on MLB games are determined
largely by the starting pitchers. Late in the 2007 season, the money line on a
key Red Sox–Yankees game was NY(+120) at Boston(−130). The starters
were Josh Beckett (Boston) and Andy Pettitte (NY). Without the book-
maker’s commission, the true money line was NY(+125) at Boston(−125);
that is, the true odds of Boston’s winning were 1 to 1.25. Since odds to $1
can be converted to probability in terms of the relation

probability = [(odds to $1)+1]−1, (8.5.1)

the probability of a Boston (New York) win was 0.556 (0.444) based on
the true money line; that is, if this was game t for team i = Boston, the
probability of a Boston win is denoted by

P(i = Boston, t) = 0.556. (8.5.2)

Similar to NFL and NBA games, a second line, denoted by LTOT (i , t),
is on the total runs scored by both teams. Typically, LTOT (i , t) ranges from
7 to 9.

A win probability of 0.556 for Boston has a number of interpretations.
The following five interpretations are not exhaustive.

Interpretation 1 If Boston and New York were to play many games
under exactly the same conditions, Boston would win 55.6 % of the games.
(The fallacy of this interpretation is that, in contrast to tossing a coin, no
baseball game is replayed under precisely the same conditions.)

Interpretation 2 55.6 % of the gambling public thinks that Boston will
win the game.

Interpretation 3 On a [0,1] scale, 0.556 is a subjective judgment that
Boston will win.

Interpretation 4 Boston will score 55.6 % of the total runs scored in
the game.
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Interpretation 5 In an empirical Bayesian context, 0.556 is the expec-
tation of the distribution of Boston win probabilities in games against the
Yankees in recent times.

When odds are converted to probabilities and probabilities are con-
verted to expected winning margins (Mallios, 2000), it is often the case that
a favorite may win and have a negative gambling shock or an underdog may
lose and have a positive shock. However, shocks defined in this manner are
meaningless—in the sense of having no significant effects on subsequent
game outcomes—since such expected winning margins are mathematical
artifices that are typically unknown to opposing team players and the gam-
bling public. In contrast, such gambling shocks have meaning in basketball
and football, given that a point spread on the difference is known and
understood by all concerned.

However, gambling shocks corresponding to the money line may have
meaning when favorites lose or underdogs win and when favorites (under-
dogs) win (lose) by much more than anticipated. Accordingly, the baseball
gambling shock corresponding to the money line for team i in the team(i , t)
versus team (i ∗, t∗) encounter is defined as follows:

GSD(i , t) = TRA(i ∗, t∗) − P(i , t)TOT (i , t),

= 0 if P(i , t)> 0.5 and TRA(i ∗, t∗)

> TOT (i , t)/2 and G(i , t) < 0,

= 0 if P(i , t) < 0.5 and TRA(i ∗, t∗)

< TOT (i , t)/2 and G(I , t)> 0, (8.5.3)

where TRA(i ∗, t∗) is the total runs allowed by team i ∗ pitchers (starting
and relief) in game t∗, P(i , t) is the probability that team i wins, and
TOT (i , t) = TRA(i , t) + TRA(i ∗, t∗) is the total runs scored by both teams.
Under this definition, a favorite (underdog) who wins (loses) cannot have a
negative (positive) gambling shock. For example, if P(i , t) = 0.6, team i is
expected to score 60 % of the runs in that game. If team i scores in excess
of 60 % of the total runs, their gambling shock is positive; if they win but
score 60 % or less of total runs, their gambling shock is zero. Although
heuristic, definition (8.5.3), which follows from interpretation 4, appears
to be more useful in modeling relative to competing definitions that were
evaluated. The effects of this definition are illustrated in the MLB modeling
examples.

Tables 8.5.1–8.5.14 present an extensive but not comprehensive listing
of variables associated with the outcome of the game between team(i , t)
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TABLE 8.5.1 Major League Baseball: General Variables

L(i, t) = P(i, t); defined in (8.5.2)
Lagged values of L(i, t) and L(i∗, t∗)
Lagged values of D(i, t) and D(i∗, t∗)
D(i, i∗, tp): the outcome of the most recent encounter (in game tp) between teams i and i∗
LTOT(i, t): the bookmaker’s line on the total runs scored by both teams
Lagged values of TOT(i, t) and TOT(i∗, t∗)
Lagged values of GSD(i, t) and GSD(i∗, t∗); see (8.5.3)
Lagged values of GST(i, t) = TOT(i, t) − LTOT(i, t) and GTOT(i∗, t∗)
W(i, t) = 1 for home game

= −1 for away game
DN(i, t) = 1 for day game

= −1 otherwise
NA(i, t) = 1 for natural turf

= −1 for artificial turf
DE(i, t) = 1 for intra-division game

= −1 for inter-division game
RL(i, t) = 1 if starting pitcher for team i∗ is right-hander

= −1 otherwise
WT(i, t), WT(i∗, t∗): percentage of games won in previous 10 games
WT(i, i∗, t): percentage of games won by team i in games with team i∗ prior to game t
WC(i, t), WC(i∗, t∗): consecutive wins (WC � 1) or losses (WC � −1) prior to forthcoming

game
WC(i, i∗, t): consecutive wins or losses by team i in encounters with team i∗ just prior to

game t
WH(i, t), WH(i∗, t∗): winning percentage at home
WR(i, t), WR(i∗, t∗): winning percentage on the road
WWHO(i, t) = WH(i, t) − WR(i∗, t∗) if W(i, t) = 1

= WR(i, t) − WH(i∗, t∗) if W(i, t) = −1
WWHO(i∗, t∗) = WH(i∗, t∗) − WR(i, t) if W(i∗, t∗) = 1

= WR(i∗, t∗) − WH(i, t) if W(i∗, t∗) = −1

TABLE 8.5.2 Major League Baseball: Variables Relating to Runs Scored

D(i, t) = −D(i∗, t∗)
RA(i, t): total runs allowed by team i starting pitcher in game t
RRA(i, t): total runs allowed by team i relief pitchers in game t
RS(i, t) = RA(i∗, t∗): (total runs scored by team i off team i∗ starting pitcher) = (total runs

allowed by team i∗ starting pitcher)
RRS(i, t) = RRA(i∗, t∗): (runs scored by team i off team i∗ relief pitchers) = (total runs

allowed by team i∗ relief pitchers)
TRA(i, t) = RA(i, t) + RRA(i, t) = RS(i∗, t∗) + RRS(i∗, t∗), [D(i, t) = TRA(i∗, t∗) − TRA(i, t)]
TOT(i, t) = TRA(i, t) + TRA(i∗, t∗): total runs scored by opposing teams

and its opponent, team(i ∗, t∗). Variables defined in these tables begin with
Table 8.5.1: General Variables and end with Table 8.5.14: Shocks Pertaining
to Team Offense in Support of the Starting Pitcher in His Previous Start .

Game-specific variables appear in Tables 8.5.1–8.5.5, while team aver-
ages begin in Table 8.5.6 with Variables Pertaining to Average Perfor-
mances by All Starting Pitchers . For example, IPA(i , t−1) in Table 8.5.5
denotes the average innings pitched by all team i pitchers in the last 40
games. If fewer than 40 games have been played, the deficit is made up by
games in the latter portion of the previous season.



8.5 MAJOR LEAGUE BASEBALL: A DATA-INTENSIVE GAME 117

TABLE 8.5.3 Major League Baseball: Variables Relating to Team i
Starting Pitcher in Game t

IP(i, t): total innings pitched
HT(i, t): total hits allowed
ER(i, t): total earned runs
BB(i, t): total bases on balls
SO(i, t): total strikeouts

TABLE 8.5.4 Major League Baseball: Variables Relating to Team i
Aggregate Relief Pitching in Game t

RIP(i, t): total innings pitched by aggregate relief pitchers
RHT(i, t): total hits allowed
RER(i, t): total earned runs
RBB(i, t): total bases on balls
RSO(i, t): total strikeouts

TABLE 8.5.5 Major League Baseball: Variables Relating to Team i
Offense in Game t

OAB(i, t): total at bats by team i
OHT(i, t): total hits [OHT(i, t) = HT(i∗, t∗) + RHT(i∗, t∗)]
O2b(i, t): total two-base hits
O3B(i, t): total three-base hits
OHR(i, t): total home runs
ORBI(i, t): total runs batted in
OBB(i, t): total bases on balls [OBB(i, t) = BB(i∗, t∗) + RBB(i∗, t∗)]

TABLE 8.5.6 Major League Baseball: Variables Pertaining to
Average Performances by All Starting Pitchers

IPA(i, t − 1), IPA(i∗, t∗−1): average innings pitched by all starting pitchers
HTA(i, t − 1), HTA(i∗, t∗ − 1): average hits allowed
RNA(i, t − 1), RNA(i∗, t∗ − 1): average runs allowed
ERA(i, t − 1), ERA(i∗, t∗ − 1 earned run average
BBA(i, t − 1), BBA(i∗, t∗ − 1): average bases on balls
SOA(i, t − 1), SOA(i∗, t∗ − 1): average strikeouts

TABLE 8.5.7 Major League Baseball: Variables Relating to Average
Performances by All Relief Pitchers

RIPA(i, t − 1), IRPA(i∗, t∗ − 1): average innings pitched by all relief pitchers
RHTA(i, t − 1), RHTA(i∗, t∗ − 1): average hits allowed
RRNA(i, t − 1), RRNA(i∗, t∗ − 1): average runs allowed
RERA(i, t − 1), RERA(i∗, t∗ − 1): earned run average
RBBA(i, t − 1), RBBA(i∗, t∗ − 1): average bases on balls
RSOA(i, t − 1), RSOA(i∗, t∗ − 1): average strikeouts
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TABLE 8.5.8 Major League Baseball: Variables Pertaining to Average Performances by
a Specific Starting Pitcher

IPa(i, tp), IPa(i∗, t∗p): average innings pitched by specific starting pitcher
HTa(i, tp), HTa(i∗, t∗p): average hits allowed
RNa(i, tp), RNa(i∗, t∗p): average runs allowed
ERa(i, tp), ERa(i∗, t∗p): earned run average
BBa(i, tp), BBa(i∗, t∗p): average bases on balls
SOa(i, tp), SOa(i∗, t∗p): average strikeouts

TABLE 8.5.9 Major League Baseball: Variables Pertaining to Average Performances by
Relief Pitchers in Support of a Specific Starting Pitcher

RIPa(i, tp), RIPa(i∗, t∗p): average innings pitched by all relief pitchers in support of starter
RHTa(i, tp), RHTa(i∗, t∗p): average hits allowed
RRNa(i, tp), RRNa(i∗, t∗p): average runs allowed
RERa(i, tp), RERa(i∗, t∗p): earned run average
RBBa(i, tp), RBBa(i∗, t∗p): average bases on balls
RSOa(i, tp), RSOa(i∗, t∗p): average strikeouts

TABLE 8.5.10 Major League Baseball: Variables Pertaining to Average per Team
Offense in Support of All Starting Pitchers

OABA(i, t − 1), OABA(i∗, t∗ − 1): average number of at-bats in support of all starting
pitchers

OHTA(i, t − 1), OHTA(i∗, t∗ − 1): average number of hits
O2BA(i, t − 1), O2BA(i∗, t∗ − 1): average number of doubles
O3BA(i, t − 1), O3BA(i∗, t∗ − 1): average number of triples
OHRA(i, t − 1), OHRA(i∗, t∗ − 1): average number of home runs
ORBIA(i, t − 1), ORBIA(i∗, t∗ − 1): average number of runs batted in
OBBA(i, t − 1), OBBA(i,∗ , t∗ − 1): average number of bases on balls
OBA(i, t − 1), OBA(i∗, t∗ − 1): batting average

TABLE 8.5.11 Major League Baseball: Variables Pertaining to Average per Team
Offense in Support of a Specific Starting Pitcher

OABa(i, tp), OABa(i∗, t∗p): average number of at-bats in support of starting pitcher
OHTa(i, tp), OHTa(i∗, t∗p): average number of hits
O2Ba(i, tp), O2Ba(i∗, t∗p): average number of doubles
O3Ba(i, tp), O3Ba(i∗, t∗p): average number of triples
OHRa(i, tp), OHRa(i∗, t∗p): average number of home runs
ORBIa(i, tp), ORBIa(i∗, t∗p): average number of runs batted in
OBBa(i, tp), OBBa(i,∗ , t∗p): average number of bases on balls
OBa(i, tp), OBa(i∗, t∗p): batting average

TABLE 8.5.12 Major League Baseball: Shocks Pertaining to the Starting Pitcher in His
Previous Start (in game tp)a

SIP(i, tp) = IP(i, tp) − IPa(i, tp−1), SIP(i∗, t∗p): shock for innings pitched by starting pitcher
in his last start

SHT(i, tp) = HT(i, tp) − HTa(i, tp − 1), SHT(i∗, t∗p)
SRN(i, tp) = RN(i, tp) − RNa(i, tp − 1), SRN(i∗, t∗p)
SER(i, tp) = ER(i, tp) − ERa(i, tp − 1), SER(i∗, t∗p)
SBB(i, tp) = BB(i, tp) − BBa(i, tp − 1), SBB(i∗, t∗p)
SSO(i, tp) = SO(i, tp) − SOa(i, tp − 1), SSO(i∗, t∗p)

aSee Table 7.5.3 for variable definitions.
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TABLE 8.5.13 Major League Baseball: Shocks Pertaining to Aggregate Relief Pitching
in Support of the Starting Pitcher in His Previous Starta

SRIP(i, tp) = RIP(i, tp) − RIPa(i, tp − 1), SRIP(i∗, t∗p): shock for innings pitched by
aggregate relief pitching in support of starting pitcher in his last start

SRHT(i, tp) = RHT(i, tp) − RHTa(i, tp − 1), SRHT(i∗, t∗p)
SRRN(i, tp) = RRN(i, tp) − RRNa(i, tp − 1), SRRN(i∗, t∗p)
SRER(i, tp) = RER(i, tp) − RERa(i, tp − 1), SRER(i∗, t∗p)
SRBB(i, tp) = RBB(i, tp) − RBBa(i, tp − 1), RSBB(i∗, t∗p)
SRSO(i, tp) = RSO(i, tp) − RSOa(i, tp − 1), RSSO(i∗, t∗p)

aSee Table 7.5.4 for variable definitions.

TABLE 8.5.14 Major League Baseball: Shocks Pertaining to Team Offense in Support of
the Starting Pitcher in His Previous Starta

SOAB(i, tp) = OAB(i, tp) − OABa(i, tp − 1), SOAB(i∗, t∗p): shock for team offense in
support of starting pitcher in his last start

SOHT(i, tp) = OHT(i, tp) − OHTAa(i, tp − 1), SOHT(i∗, t∗p)
SO2B(i, tp) = O2B(i, tp) − O2Ba(i, tp − 1), SO2B(i∗, t∗p)
SO3B(i, tp) = O3B(i, tp) − O3Ba(i, tp − 1), SO3B(i∗, t∗p)
SOHR(i, tp) = OHR(i, tp) − OHRa(i, tp − 1), SOHR(i∗, t∗p)
SORBI(i, tp) = ORBI(i, tp) − ORBIa(i, tp − 1), SORBI(i∗, t∗p)
SOBB(i, tp) = OBB(i, tp) − OBBa(i, tp − 1), SOBB(i, ∗, t∗p)

aSee Table 7.5.5 for variable definitions.

Averages for individual players begin in Table 8.5.8 with Variables
Pertaining to Average Performances by a Specific Starting Pitcher . For
example, IPA(i , tp) in Table 8.5.8 denotes the average innings pitched by a
starter in his last five games through his previous start in game tp . In the
early stages of the regular season, the average dates back to later starts in
the previous season.

Shocks for individual players begin in Table 8.5.12 with Shocks Per-
taining to the Starting Pitcher in His Previous Start (in Game tp). With
IP(i , tp) defined earlier in Table 8.5.3, SIP(i , tp) in Table 8.5.12 denotes
the shock associated with the number of innings pitched by the starting
pitcher in his previous start in game tp . For example, if SIP(i , tp) is a large
positive (negative) value, the starter pitched far more (fewer) innings in
his previous start than he had in the past. Such shocks associated with
his previous start may affect his effort in the current game by reflect-
ing physiological–psychological–sociological variables that have not been
measured.

8.6 WHILE STILL UNDER THE CURSE: MODELING PROFILE
OF THE 1990 BOSTON RED SOX

Moralists in the 19th century placed an extraordinary emphasis on probity.
When congratulated on his baseball team, Harvard President Charles Eliot
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responded, “I’m told the team did well because one pitcher had a fine curve
ball. I understand a curve ball is thrown with a deliberate attempt to deceive.
Surely that is not an ability we should want to foster at Harvard.” (Brooks,
6/8/99)

Boston won the World Series in 1918, the year in which the Kaiser surren-
dered. In 1920, Boston owner Harry Frazee financed the Broadway play No,
No, Nanette by selling Babe Ruth to the Yankees for $100,000. Their next
World Series appearance was in 1946, a year after Hirohito surrendered.
They lost to the Cardinals: Ted Williams couldn’t hit, and Red Sox third
baseman Johnny Pesky managed to freeze when Enos Slaughter rounded
third.

There were other memorable Red Sox World Series losses, but none more
so in the minds of Red Sox faithful than the 1986 World Series against the
Mets. Mookie Wilson’s slow-hop grounder skipped between the legs of
Red Sox first baseman Bill Buckner to end game six. The Bambino’s Curse
finally ended when the Red Sox, the symbol of heartbreak and human foible
to their faithful, swept the Cardinals in 2004 and the Colorado Rockies
in 2006.

The following modeling illustrations are intended to provide added sup-
port to sports quant modeling that has contributed to the success of gen-
eral managers such as Billy Bean and Theo Epstein (see Section 2.2).
Team/game-specific models for MLB are based on a structural system
involving the following endogenous variables defined in Table 8.5.2: D(i , t),
TOT (i , t), RA(i , t), RS (i , t), and RRS (i , t). Based on these variables, a
proposed structural system contains two equalities:

D(i , t) = RS (i , t) + RRS (i , t) − RA(i , t) − RRA(i , t),

TOT (i , t) = RS (i , t) + RRS (i , t) + RA(i , t) + RRA(i , t),
(8.6.1)

and four stochastic equations, one for each of RS (i , t), RRS (i , t), RA(i , t),
and RRA(i , t). From the four reduced-form equations that result from a
specification of the four stochastic equations, we may obtain reduced-form
equations for D(i , t) (Who will win the game and by how much?) and
TOT(i , t) (How many total runs will be scored?).

Consider the reduced-form model for D(i = Boston, t) under the
assumption of time-varying coefficients. As in (8.1.1), the modeling
process is initiated by replacing lagged statistical shocks with lagged
gambling shocks:

E [D(i , t)] ≈ α(t)′D(t−) + γGSD(t)′GSD(t−)

+γGST(t)′GST(t−) + β(t)′x(t). (8.6.2)
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The vector x(t) now includes all variables defined in Table 8.5.1
and Tables 8.5.6–8.5.14. Let S(t−) denote the shocks defined in Tables
8.5.12–8.5.14. Aside from GSD(t−) and GST(t−), elements of S(t−)

may also contribute to the time-varying coefficients in (8.6.1). As such,
in contrast to (8.1.2), expressions for the time-varying coefficients are
augmented to include the effects of S(t−):

E [ψt ] ≈ ψ + ψ′
1GSD(t−) + ψ′

2GST(t−) + ψ′
3S(t−). (8.6.3)

Substitution of (8.6.2) into (8.6.1) leads to a reduced equation for E [D(i , t)]
with a multitude of possible predictor variables—all of which are known.

As presented in Section 8.2, model identification in (8.6.2) may be
approached in several ways. The first is to reduce the dimensionality of the
predictor variables through a factor analysis and to scan, through stepwise
regression, factor scores associated with eigenvector with roots sufficiently
large. A second approach is simply to scan all the possible predictors
directly and retain those with significant effects. For purposes of simpli-
fication, we present results based on the second approach and temporarily
forgo the factor analysis approach. With a few exceptions, both approaches
lead to noncontradictory forecasts.

Following the model identification in (8.6.2), we then substitute expres-
sions in (8.6.3) into (8.6.2) to obtain a higher-order reduced model for
D(i , t) that contains MA terms. The MA terms are scanned for signifi-
cance through the nonlinear weighted least squares estimation procedure
described in Section 7.3. With the presence of MA terms in bilinear-type or
higher-order ARMA-type models, the model identification and estimation
process is tedious.

The fitted forecasting model for D(i = Boston, t) is based on the latter
part of the 1989 season and all 1990 regular season games (excluding the
1990 play-offs). Data from the latter part of the 1989 season are necessary
for purposes of determining lags for the earlier games of the 1990 season.
The reduced forecasting model for D(i = Boston, t) is estimated by

D(i = Boston, t)∧ = 1.1364.28DE (i , t) + 0.1362.57GTOT (i ∗, t∗−1)

− 0.4132.19SRBB(i , tp)

− 0.4532.98SO2B(i , tp) + 0.6282.09SOHR(i , tp)

+ 0.3462.86SOBB(i , tp)

− 1.4264.49RIPA(i ∗, t∗
p ) − 0.1942.71SOHT (i ∗, t∗

p )

− 0.3623.04SOBB(i ∗, t∗
p )

+ 0.8792.34[RRNA(i , t−1) − RRNA(i ∗, t−1)]



122 SINGLE-EQUATION MODELING: SPORTS GAMBLING MARKETS

+ 3.2872.94[RSOA(i , t−1)/RIPA(i , t−1)]

+ 3.0586.25[RBBa(i , tp) − RBBa(i , t∗
p )]

− 0.6594.40SER(i , tp) + 0.1562.56eR(i , t−2)SER(i , tp)

− 1.0202.56eR(i , t−1)SRHT (i , tp)

− 0.1602.07eR(i , t−2)SBB(i ∗, t∗
p )

+ 0.0972.62eR(i , t−2)RIPA(i , tp). (8.6.4)

Model updates during the last weeks of the regular season showed only
minor changes in coefficients and model structure.

The Boston model is clearly dominated by variables reflecting pitching
performances by starters and relief pitchers. There is every reason to expect
the same to hold for current-day MLB games. However, given the evolution
of the pitching game over the past decade, quant forecasting models are
likely to differ considerably from (8.6.4). The pitching evolution has been
attributed to the following factors:

1. Relievers are more effective than starters because of the way they are used
(so now they are being used more).

2. All pitchers have become less effective the longer they are in games (so all
pitchers are being used for shorter outings).

3. The starting rotation could be shortened to four pitchers, even without
shortening their average outing.

4. Relievers are also not used to their limit. (A study on the evolution of
pitching staff usage, www.livewild.org/bb//pitchingstaff/index.htlm)

In (8.6.4), the positive effect of DE (i = Boston, t) reflects the relatively
poor performance of Boston against American League West teams during
that period; that is, a game against an ALW team subtracted 1.136 points,
on the average, from D∧(i = Boston, t). The positive effect of GTOT (i ∗,
t∗ − 1), the gambling shock on the total line for Boston’s opponent in their
previous game, reflected heightened preparation on Boston’s part and/or sta-
bility on the part of their opponent. Stability is defined as the tendency for
larger positive (negative) shocks associated with the outcome of the current
game to have negative (positive) effects on the outcome of a subsequent
game. The negative effect of SRBB(i = Boston, tp), the shock pertaining to
aggregate bases on balls by relief pitchers in support of the starting pitcher
in his last outing, probably reflects stability; that is, poorer (better) than
expected support for the starter in his last outing tended to be compensated
by better (poorer) than expected support for the starter in his next start.
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Similar to the effect of SRBB(i = Boston, tp), effects of the shocks
SO2B(i = Boston, tp), SOHR(i = Boston, tp), and SOBB(i = Boston, tp)
indicate that Boston’s offensive support for its starting pitcher was not
so much in terms of their average support for that pitcher but rather, in
terms of how well or poorly, relatively speaking, they supported him in
his previous start.

These variables also illustrate that D∧(i = Boston, t) was more influ-
enced by events from the starting pitcher’s last start in game tp than from
their last game. The positive effects of the shocks SOHR(i = Boston, tp),
and SOBB(i = Boston, tp) may indicate streaks in Boston’s offensive over-
or underperformance in terms of home runs and bases on balls in support of
the starting pitcher. The negative effect of SO2B(i = Boston, tp) may indi-
cate a stability. Or possibly SO2B(i = Boston, tp) reflects variables such
as the effect of Fenway Park’s configuration in enhancing two-base hits.

RIPA(i ∗, t∗
p ) measures the average innings pitched by relief pitchers in

support of the opposition’s starting pitcher through his previous start. The
negative effect of this variable has led some observers to conclude that
relief pitchers should start games and starting pitchers should end games.
This strategy fails to recognize that large values of RIPA(i ∗, t∗

p ) do not nec-
essarily indicate an ineffective starting pitcher. Rather, it may indicate that
the starter’s effectiveness may end relatively early and that the opposition’s
manager knows when to pull his starter (based on, say, the number of pitches
thrown, pitching velocity and changes in velocity, number of strikes/balls
thrown, etc.—all of which should be considered in more extensive model
development).

The negative effects of SOHT (i ∗, t∗
p ) and SOBB(i ∗, t∗

p ), shocks pertaining
to team offense in support of the opposition’s starting pitcher in his previous
start may reflect stability; for example, the performance of Boston’s oppo-
nent in game t was enhanced (degraded) if their starting pitcher received
better than average (poorer than average) offensive support in his previous
start.

The positive effect of RRNA(i = Boston, t−1) − RRNA(i ∗, t−1), the dif-
ference in average, aggregate runs allowed by relief pitchers between oppos-
ing teams, is counterintuitive—unless it is argued that Boston’s offense
tended to compensate for its relief pitchers when their aggregate perfor-
mance was inferior to that of Boston’s opponent. There is a logical, pos-
itive effect of pitching effectiveness, measured in terms of [RSOA(i =
Boston, t−1)/RIPA(i = Boston, t−1)], the ratio of the average strikeouts
to the average innings pitched by Boston relief pitchers through game
t−1. There is also a logical, negative effect of [RBBa(i = Boston, tp) −
RBBa(i , t∗

p )], the average bases on ball by relievers in support of Boston’s



124 SINGLE-EQUATION MODELING: SPORTS GAMBLING MARKETS

starting pitcher through his previous start minus the comparable figure for
the opponent’s starting pitcher.

The negative effect SER(i = Boston, tp) = ER(i = Boston, tp) −
ERA(i = Boston, tp−1), the earned run shock for Boston’s starting pitcher
in his previous outing, is counterbalanced by the positive effect of its
interaction with eR(i = Boston, t−2), Boston’s statistical shock as of
game t−2. Collecting terms containing SER(i = Boston, tp), we have
SER(i = Boston, tp)[−0.659 + 0.156eR(i = Boston, t−2)]. In cases where
SER(i = Boston, tp) and eR(i = Boston, t−2) are opposite in sign, stability
is reinforced; for opposite signs, stability is lessened.

The final three interactions involve lagged statistical shocks dating
back to either game t−1 or t−2. The effects of SRHT (i = Boston, tp),
the shock in the relief support for the starting in his previous start;
SBB(i ∗, t∗

p ), the shock for the opposition’s starting pitcher in his last start;
and RIPA(i = Boston, tp), the average innings pitched by all relief pitchers
in support of Boston’s starting pitcher, are affected by values of either
eR(i = Boston, t−1) and eR(i = Boston, t−2).

There are both interpretational and conceptual difficulties in modeling
D(i = Boston, t) in terms of D∧(i = Boston, t) in (8.6.3). First, many of
the variables appearing in (8.6.3) appear to be aliases for other variables.
Second, many of the variables deal with pitching performances. As such, it
would be preferable to model individual pitching performances in terms of
the number of runs allowed, as illustrated in the following section.

8.7 PORTRAIT OF CONTROVERSY: MODELING PROFILE OF
ROGER CLEMENS WITH THE 1990 RED SOX

For effective intragame decision making, modeling of pitcher performance
should proceed on an inning-by-inning basis or, preferably, on an out-by-
out basis, or even on a pitch-by-pitch basis. To avoid the accompanying
task of compiling a database that would allow such microgame modeling,
a simplified, aggregate modeling approach is illustrated in terms of Roger
Clemens’ per game performances with the 1990 Red Sox. A modeling
portrait of Clemens’ nemesis during that time period, Dave Stewart of the
Oakland A’s, is discussed in Section 8.8.

Table 8.7.1 presents modeling results for the following four vari-
ables associated with Clemens’ successive per game performances in
1990: RA(i = Boston, t), the number of runs allowed by Clemens;
RRA(i = Boston, t), the number of runs allowed by relief pitchers in
support of Clemens; RA(i ∗, t∗), the number of runs in support of Clemens;
and RRA(i ∗, t∗), the number of runs in support of Clemens’ relief pitchers.
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TABLE 8.7.1 Year-end 1990 Pitcher-Specific Models fora

RA(i,t) Model RRA(i,t) Model

Predictor Coefficient (|t|) Predictor Coefficient (|t|)
WT(i, t) 4.943 (10.2) NA(i, t) 1.162 (5.82)
SER(I, tp) −0.294 (2.92) WC(i*, t*) −0.202 (3.79)
SO3B(i, tp) −1.354 (5.96) SRSO(i, tp) 0.369 (5.85)
SOHR(i, tp) −0.886 (4.76) SO3B(i, tp) −1.889 (7.00)
OHRa(i*, t∗p) −0.986 (3.06) O2Ba(i*, t∗p) 0.661 (3.14)
BBA(i, t−1) - BBA(i*, t*−1) −1.065 (6.69) SOAB(i*, t∗p) 0.125 (3.54)
BBa(i, tp) - BBA(i*,t∗p) 0.919 (3.94) TOT(i, t−1) 0.128 (3.75)
[e(i, t−2)] [RL(i,t)] 0.150 (4.52) [GSD(i, t−1)] [RL(i, t)] −0.333 (4.71)
[e(i, t−2)] [O3Ba(i*,t∗p)] −0.019 (2.43) [e(i, t−1)] [SRSO(i*, t∗p)]b −0.110 (4.20)

RA(i*,t*) Model RRA(i*,t*) Model

Predictor Coefficient (|t|) Predictor Coefficient (|t|)
NA(i, t) −1.100 (8.88) GTOT(i, t−2) 0.165 (3.79)
O3Ba(i, tp) −13.150 (7.35) SOBB(i, tp) 0.479 (4.20)
SHT(i, tp) 0.401 (7.65) SO2B(i*, t∗p) −0.508 (2.48)
SOBB(i, tp) 0.283 (6.05) RNA(i, t−1) - RNA(i*,t*−1) −1.659 (5.31)
RNa(i*, t∗p) 0.877 (8.30) RHTA(i, t−1) - RHTA(i*,t*−1) 1.106 (4.78)
SBB(i*, t∗p) −0.244 (4.25) O3BA(i, t−1) - O3BA(i*,t*−1) −3.394 (3.91)
SSO(i*, t∗p) −0.164 (3.33) RNA(i, t−1) - RNA(i*,t*−1) −1.124 (4.56)
O3BA(i, t−1) - O3BA(i*,t*−1) −3.656 (8.89) [GTOT(i, t−1)] [GTOT(i, t−2)] −0.066 (6.76)
D1ERA(i, t−1)c −2.285 (4.39) [GSD(i, t−1)] [SRRN(i, t−1)] −0.308 (3.97)

aRA(i = Clemens, t), RRA(i = aggregate relief pitching in support of Clemens, t), RA(i∗ = opposition starter, t∗),
and RRA(i∗ = aggregate relief pitching in support of opposition starter, t∗).
bLagged statistical shocks are based on D∧(i = Boston, t) in (8.6.4).
cD1ERA(i, t − 1) = ERA(i, t − 1) − ERA(i∗, t∗ − 1) when ERA(i, t − 1)>ERA(i∗, t∗ − 1); = 0, otherwise.

Relative to D∧(i = Boston, t) in Table 8.6.1, the Clemens modeling pro-
file in Table 8.7.1 provides an alternative and confirmatory prediction for
D(i = Boston, t) for games in which Clemens was the starting pitcher.
As with the Boston team model in (8.6.4), lags for early 1990 season
games are based on the latter portion of the 1989 season. Conceptually,
the Clemens modeling profile is that first step to modeling all individual
player performances.

Consider, first, the Clemens model for RA(i , t). Clemens tended to pitch
more effectively when recent Red Sox performances had been poor to
mediocre. In terms of runs allowed, this effectiveness is reflected by the
lead predictor, WT (i , t), Boston’s win percentage over the last 10 games,
which has a positive coefficient of 4.943; that is, for each loss in Boston’s
last 10 games prior to game t , Clemens tended to allow nearly 0.5 fewer
runs in game t . However, a caveat to the positive effect of WT (i , t) on
RA(i , t) is the negative effect of the interaction [eR(i , t−2)][O3Ba(i ∗, t∗

p )].
Suppose that for the first term of the interaction, we have eR(i , t−2) � 0.
This indicates a poor past performance by Boston, in which case Clemens’
game t performance should have been enhanced. However, larger val-
ues of the other member of the interaction, O3Ba(i ∗, t∗

p ), indicates a fast
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opposition team (fast refers to team speed). Since Clemens did not perform
as well against fast teams, the negative effect of this interaction indicates
that fast teams tended to degrade his performance even in games where
his performance was expected to be enhanced [such as in the aftermath of
eR(i , t−2) � 0].

Clemens also tended to pitch better against better teams, which is
reflected by the negative coefficient of BBA(i , t) − BBA(i ∗, t∗); for
example, if better teams can be characterized as having higher values of
BBA (the average number of bases on ball by a team’s offense), a positive
value of BBA(i , t) − BBA(i ∗, t∗) contributes to the superiority of team i
over team i ∗.

Clemens tended not to fare as well when the opposition starter was a
control pitcher, which is reflected in the positive coefficient of BBa(i , tp) −
BBa(i ∗, t∗

p ); that is, since control pitchers have lower values of BBa (the
average number of bases on ball by the specific pitcher in his previous
starts), negative values of BBa(i , tp) − BBa(i ∗, t∗

p ) indicate that Clemens’
opposition counterpart had better control—which tended to add to the num-
ber of runs allowed by Clemens.

The predictor OHRa(i ∗, t∗
p ), the average per game home runs in support

of the opposition starter, has a negative coefficient of −0.986. Large values
of this predictor may indicate a mediocre pitcher—in the sense that better
starters tend to receive less offensive support (because they usually don’t
require as much), whereas poorer starters tend to receive more offensive
support (because they usually do require such support). Thus, Clemens
tended to be more effective when facing a lineup that had to provide more
offensive power for its starting pitcher.

The three shock predictors, SER(i , tp), SO3B(i , tp), and SOHR(i , tp),
reflect pitcher stability. The negative coefficient of SER(i , tp) indicates
that when Clemens allowed fewer (more) earned runs in a previous start
(relative to his earned run average up to that start), he tended to allow
more (fewer) earned runs in a subsequent start. The other two shocks,
SO3B(i , tp), and SOHR(i , tp), pertain to offensive support for Clemens.
For example, if in Clemens’ previous start, Boston’s offense provided an
excess of support—in terms of getting more than three base hits and home
runs relative to other games in which Clemens was the starter, then Clemens
tended to receive less than the expected support in his subsequent start.

The interaction [eR(i , t−2)][RL(i , t)]—with a positive coefficient of
0.150—combines Boston’s statistical shock of two games ago [i.e.,
eR(i , t−2)> 0 if the performance was “good” and eR(i , t) < 0 if it was
“poor”] with whether the opposition starter in game t is a right-hander
[RL(i , t) = 1] or a left-hander [RL(i , t) = −1]. In explaining the effect
of this interaction, we first note that Boston’s offense did better against
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left-handed pitching, a fact well known to all Boston pitchers. Suppose, in
addition, that eR(i , t−2) � 0, which indicates a poor Boston performance
two games ago and presages an anticipated Boston turnaround. The
combination of an anticipated Boston turnaround (due to stability, which
may take two games to achieve) and a left-handed opposition starting
pitcher in game t may indicate that Clemens’ performance did not need to
be as sharp (in which case he tended to allow more runs). If, under the
same circumstances, the opposition starter was a right-hander, a sharper
performance by Clemens was required (in which case he tended to allow
fewer runs).

The Clemens model for RA(i ∗, t∗) describes how Boston’s offense
reacted with Clemens as the starter. The first point to be noted is that six
of the nine predictors are pitcher specific, either in terms of shocks or of
aggregate performance. Thus, Boston’s offensive performance was attuned
to the abilities of the opposing starter, to Clemens’ known abilities, and to
the most recent performances by Clemens and his opposition counterpart.

The negative coefficient of NA(i , t) shows that Boston hitters were
more productive on artificial turf [NA(i , t) = −1] than on natural turf
[NA(i , t) = 1]. For this particular equation, the predictor O3Ba(i , tp)
reflects the shock SO3B(i , tp); that is, major changes in O3Ba(i , tp) are
a result of large values of SO3B(i , tp). Thus, the negative coefficient
of O3Ba(i , tp) may indicate that Clemens’ game t performance was
enhanced when increased offensive support (in terms of three base
hits) was necessary in his previous start. Another possible explanation
is that Clemens competed with his offense—in the sense that when
SO3B(i , tp) � 0, Clemens reacted by reducing the runs he allowed in his
subsequent start.

The ability of the opposing starter is reflected by RNa(i ∗, t∗
p ), which

has a logical, positive coefficient of 0.877; that is, with Clemens pitching,
Boston’s offense tended to average roughly 0.9 run for every average run
allowed by the opposition pitcher prior to game t∗. [Note: The coefficient of
RNa(i ∗, t∗

p ) is higher for other Boston starters; that is, other Boston starters
tended to require more offensive support than did Clemens.]

The positive coefficient of the shock SHT (i , tp) indicates stronger
(weaker) offensive support for Clemens in game t if he allowed an
excess (a deficiency) of hits in his previous start.1 The shock SOBB(i , tp),

1A lack of offensive support plagued Clemens throughout his career. In 2005, the 42-year-old
Clemens was with the Houston Astros. In a midseason game against the Dodgers, Clemens
was victimized by poor run support again. The Rocket allowed two runs in seven strong
innings but didn’t get a decision as the Astros beat the Dodgers 3–2 . . . in the ninth . . . .
His ERA, the best in the major leagues, rose to 1.48 from 1.41 as he settled for his eighth
no-decision of the year (Associated Press, 7/9/05).
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pertaining to the excess or deficiency of bases on balls by Boston’s offense
in support of Clemens’ previous start, has a positive coefficient, which
may indicate a team streak effect. The negative coefficients of the shocks
SBB(i ∗, t∗

p ) and SSO(i ∗, t∗
p ) reflect stability of performance on the part of

the opposition starting pitcher; for example, an excess of bases on balls
and/or strikeouts by the opposing starting pitcher in his previous start
tended to result in a deficiency of bases on balls and/or strikeouts in his
subsequent start.

The negative coefficient of the difference O3BA(i , t−1) −
O3BA(i ∗, t∗−1) = D(O3BA) (say) is explained as follows. When higher
values of O3BA reflect above-average team speed and D(O3BA) < 0,
Clemens required more offensive support since he tended not to perform
as well against fast teams. When higher values of O3BA reflect offensive
power and D(O3BA)> 0, Clemens required less offensive support since
he tended to do well against power teams. The negative effect (−2.285)

of the difference D1ERA(i , t−1) = ERA(i , t−1) − ERA(i ∗, t∗−1), is not
unreasonable; that is, the greater the value of D1ERA(i , t), the greater the
opposition pitching strength and the fewer the runs by Boston’s offense.

Table 7.7.1 also presents modeling results for RRA(i , t), the runs
allowed by Boston relief pitchers when Clemens did not go the distance,
and RRA(i ∗, t∗), the runs allowed by the opposition relief pitchers in
support of Clemens’ opposition counterpart. Predictors for RRA(i ∗, t∗)
include lagged gambling shocks, corresponding to the line on the total
number of runs scored: GTOT (i , t−2), with a coefficient of 0.165, and the
interaction [GTOT (i , t−1)][GTOT (i , t−2)], with a coefficient of −0.066.
Taken together, these two predictors reflect stability; for example, the
positive contribution of a GTOT (i , t−2) � 0 is offset by the negative
contribution of the interaction when GTOT (i , t−1) � 0.

Table 8.7.1 also presents modeling results for RRA(i , t), the runs allowed
by Boston relief pitchers when Clemens did not go the distance, and
RRA(i ∗, t∗), the runs allowed by the opposition relief pitchers in support
of their starting pitcher. The negative effect of NA(i , t) on RRA(i , t)
indicates that Boston’s relief pitchers allowed more (fewer) runs on natural
(artificial) turf. Thus, Boston’s hitters and relief pitchers both performed
better on artificial turf. The positive effect of SRSO(i , tp), the shock
corresponding to the total strikeouts by relievers in support of Clemens,
indicates a carryover or streak effect on the part of the relievers.

GSD(i , t), the gambling shock on the difference in scores defined in
(7.5.2), enters as an interaction in both the RRA(i , t) and RRA(i ∗, t∗) mod-
els. For the former model, the negative effect of [GSD(i , t−1)][RL(i , t)]
indicates that Boston’s relievers were more (less) effective when the oppo-
sition starter was a right-hander and when Boston performed better (worse)
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than expected in their previous game. For the RRA(i ∗, t∗) model, the neg-
ative effect of [GSD(i , t−1)][SRRN (i , t−1)] indicates that the opposition
relievers were less effective if the runs allowed by Boston’s relievers in
game t−1 exceeded the norm and if Boston’s expected performance in that
game was subpar.

Predictors for RRA(i ∗, t∗) also include lagged gambling shocks corre-
sponding to the line on the total number of runs scored: GTOT (i , t−2), with
a coefficient of 0.165, and the interaction [GTOT (i , t−1)][GTOT (i , t−2)],
with a coefficient of −0.066. Taken together, these two predictors reflect
stability [e.g., the positive contribution of a GTOT (i , t−2) � 0 is offset by
the negative contribution of the interaction when GTOT (i , t−1) � 0].

8.8 PITCHER OF THE YEAR IN 1990: MODELING PROFILE OF
THE OAKLAND’S BOB GIBSON

The Oakland A’s found the San Francisco earthquake far more troublesome
than did their opponent, the San Francisco Giants, in the 1989 World Series.
And as the favorite in 1990, they played according to form—except for
the last four games. The A’s had baseball’s best pitcher in Bob Gibson
and the winningest pitcher in Dave Stewart. With Stewart pitching, the
A’s usually won, but not as easily. It was often the first game of a series
and Stewart’s counterpart was typically the opposition’s best pitcher. With
Welch pitching, the A’s also tended to win, but with greater ease. Welch’s
counterpart tended not to be the opponent’s best pitcher, and Oakland’s
hitters reacted accordingly.

In the American League play-offs, the A’s swept the Red Sox to win
the pennant. In the last game of the play-offs, it was Stewart vs. Clemens.
In the second inning, Clemens showed demonic behavior and was ejected
by umpire Terry Clooney. Said Bill Rigney, the A’s senior advisor: “The
thing I find amazing about Stew [Stewart] is that he always finds a way
to win the big game. He’s always pitching against a Clemens or [Chuck]
Finley or [Dave] Steib but he always finds a way to win. The only guy I can
think of with the same consistency was [Sandy] Koufax.” A’s manager Tony
LaRusso added: “When you get right down to it, Stew was the difference in
this game, not Clemens or Clooney.” In 2009, Bob Gibson was elected to
the Baseball Hall of Fame, while Clemens was in the process of denying
charges of using performance-enhancing drugs.

In the World Series, it was the A’s muscle of Mark McGwire (a user of
performance enhancing drugs) and José Canseco and the pitching of Stewart
and Welch vs. Cincinnati’s Billy Hatcher, a 0.265 hitter prior to the series,
and José Rijo, a pretty good pitcher. Hatcher got nine hits in 12 at-bats
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TABLE 8.8.1 Year-end Pitcher-Specific Modelsa

RA(i,t) Model RA(i,t) Model

Predictor Coefficient (|t|) Predictor Coefficient (|t|)
WC(i, t) −0.399 (4.22) TOT(i∗, t∗ − 2) −0.170 (4.48)
WT(i∗, t∗) 4.087 (4.51) SRHT(i, tp) 0.673 (8.34)
G(i∗, t∗ − 1) −0.290 (3.31) SO3B(i, tp) 1.020 (3.11)
SRHT(i, tp) −0.307 (2.89) SORBI(i, tp) −0.357 (6.06)
SO3B(i, tp) 2.102 (5.49) IPa(i∗, tp) 0.704 (5.17)
WZ(i, t)b −10.248 (4.51) RERA(i, t − 1) − RERA(i∗, t∗ − 1) −0.707 (4.02)
RNa(i, tp) − RNa(i∗, t∗p) −0.683 (2.80) OHRA(i, t − 1) − OHRA(i∗, t∗ − 1) −0.235 (6.63)
[G(i, t − 1)] [SRRN(i, tp)] −0.909 (3.24) [G(i, t − 1)] [SRSO(i∗, t∗p)] 0.485 (10.5)
D2ERA(i, t − 1)c −3.854 (10.80) [G(i, t − 1)] [RL(i, t)] 0.495 (6.58)

D2ERA(i, t − 1)c 0.888 (2.95)

aRA(i, t) and RA(i∗, t∗); i = Dave Stewart, and i∗ = opposing pitcher.
bWZ(i, t) = WR(i, t) − WH(i∗, t∗) if W(i, t) = −1; = 0, otherwise.
cD2ERA(i, t − 1) = ERA(i, t − 1) − ERA(i∗, t∗) when ERA(i, t − 1) < ERA(i∗, t∗); = 0, otherwise.

during the series and Rijo pitched two very good games. The outcome: The
Oakland lambs were led to slaughter as the Reds swept the A’s .

For the Stewart RA(i , t) model in Table 8.8.1, the negative coefficient of
WC (i , t) indicates that the longer the Oakland win steak, the fewer the runs
he allowed; that is, in game t , Stewart allowed an average of 0.4 fewer runs
for each game of an Oakland win streak through game t−1. Conversely,
the better Oakland’s opponent [in terms of WT (i ∗, t∗), the percentage of
games won by the opponent over their last 10 games], the more runs he
allowed; that is, in game t , Stewart tended to allow an average of 0.4 run
more for each game won by Oakland’s opponent in their last 10 games.

The negative coefficient of the lagged opposition gambling shock,
G(i ∗, t∗−1), indicates stability between performances on the part of the
opposition (i.e., under stability without caveats, abnormal performance
in one direction tends to be followed by subsequent performance in the
opposite direction) and/or anticipation on the part of Stewart [i.e., Stewart
tended to be more (less) effective against a team whose most recent
performance was better (worse) than expected].

The shock corresponding to hits allowed by relief pitchers in support of
Stewart in his previous appearance, SRHT (i , tp), has a negative coefficient
of −0.307. The implication is that Stewart compensated for his most recent
relief support by pitching better in game t if the relief support in game tp was
relatively weak and “easing up” if that support was relatively strong. The
effect of SRHT (i , tp) appears in both the Stewart RA(i , t) and RA(i ∗, t∗)
models, though with opposite signs. An implication is that both Stewart
and the Oakland offense adjusted following abnormal relief performances
in support of Stewart’s previous start. The opposing effects of SRHT (i , tp)
in the RA(i , t) and RA(i ∗, t∗) models, are another indication of the team
synergism of the 1990 A’s.
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The predictor

WZ (i , t) = WR(i , t) − WR(i ∗, t∗) for Oakland road games,

= 0 for Oakland home games

has a negative coefficient, which indicates that the better the opposition
on the road, the weaker the Stewart performance. On the other hand, the
negative coefficient of RNa(i , tp) − RNa(i ∗, t∗

p ) indicates that Stewart’s per-
formance was enhanced against better pitchers (as measured in terms of
average runs allowed per game).

The following explanation is given for the negative effect of the inter-
action [G(i , t−1)][SRRN (i , tp)]. If G(i , t−1) � 0 and SRRN (i , tp) � 0,
an implication is that the A’s were winning—which would have enhanced
Stewart’s game t performance. [This tends to enforce the effect of WC (i , t)
on RA(i , t), as discussed earlier.] If G(i , t−1) � 0 and SRRN (i , tp) � 0, an
implication is that the A’s were playing poorly, which would have provided
motivation for Stewart’s game t performance. [In subsequent modeling, this
interaction should be redefined—similar to (2.5.1) and (2.5.2)—as two vari-
ables, one for when G(i , t−1) and SRRN (i , tp) are of opposite signs and
one when they are of the same sign.]

The predictor SO3B(i , tp) is of special importance since it occurs in the
Clemens RA(i , t) model with a negative coefficient and in the corresponding
Stewart and Welch models with positive coefficients. Recall that an excess
of average three-base hits can reflect offensive power, team speed, or both.
Thus, large values of SO3B(i , tp) reflect abnormal power or abnormal team
speed in game tp . In the case of the Clemens RA(i , t) model, SO3B(i , tp)
tends to reflect abnormal power, and its negative coefficient may indicate
that Clemens required such support in his previous start. Hence, his game
t performance tended to compensate for that required support. In the case
of the Stewart RA(i , t) model, SO3B(i , tp) is more a reflection of team
speed, and its positive coefficient may indicate “an exceptionally good team
effort” in Stewart’s previous start. In such instances, there may have been
a tendency for Stewart to “ease up” in his subsequent start. It is also likely
that the positive effect of SO3B(i , tp) counteracted the negative effect of
WC (i , t)—which is another indicator of stability.

Regarding the Stewart model for RA(i ∗, t∗), the predictor SO3B(i , tp)
appears in both the RA(i , t) and RA(i ∗, t∗) models with positive coefficients.
Thus, if SO3B(i , tp) � 0, the indication is that Stewart eased up in his
subsequent start; it also indicates that Oakland’s offense picked up the
slack in that subsequent start.

The positive effect of the interaction [G(i , t−1)][SRSO(i ∗, t∗
p )] may

be interpreted as follows. Recall that coefficients of lagged shocks tend
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to reflect stability. This interaction illustrates caveats to stability. If
G(i , t−1)> 0, the effect of the interaction is positive if SRSO(i ∗, t∗

p )> 0
(which means that Oakland momentum was more likely to be maintained
if the opposition starter received abnormally strong relief support in his
previous start). If G(i , t−1) < 0, the effect of the interaction is negative
if SRSO(i ∗, t∗

p ) < 0 (which means that chances of an Oakland turnaround
were lessened if the opposition starter received abnormally weak relief
support in his previous start). The former case may reflect actions based on
decisions by Oakland’s manager, and the latter, actions based on decisions
by the opposition manager.

The interaction [G(i , t−1)] [RL(i , t )] has a positive effect in both the
team-specific model for Oakland and the Stewart model for RA(i ∗, t∗). The
interpretation of this effect is the same for both models.



9
Simultaneous Financial

Time Series

9.1 THE CURSE OF HIGHER DIMENSIONALITY

Too often, attention is limited to a single time series when the series under
study is, in fact, one of a system of simultaneous time series with feedbacks
between series (Quenouille, 1957). This situation is typical in financial and
sports gambling markets. Published analyses of simultaneous time series,
including allowances for dynamic processes, have tended toward oversim-
plified modeling assumptions. Such simplifications are understandable given
the complexities and perplexities of effectively forecasting price changes or
game outcomes (relative to bookmakers’ lines) during periods of market
inefficiency.

Consider a partial list of such modeling complexities.

1. A tentative model must be specified, typically in terms of a first-order
ARMA-type system of simultaneous equations. In this writing, the
ARMA-type model is in terms of a reduced regression system that
results from an unspecified structural regression system—except for
the case of the Major League Baseball structural system in (8.6.1).
Estimation of the structural system parameters is not considered in
this book. Instead, the focus is on effective forecasting through the
reduced system.

Forecasting in Financial and Sports Gambling Markets: Adaptive Drift Modeling, By William S. Mallios
Copyright  2011 John Wiley & Sons, Inc.
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2. For effective forecasting, one must, realistically, allow for time-
varying coefficients, in the sense that the ARMA-type equations
must be transitional to accommodate evolving market conditions.
This requires the specification of a second system of equations that
is assumed to generate each of the time-varying coefficients.

3. The substitution of expressions for the time-varying coefficients into
the ARMA-type reduced system in complexity 1 leads to higher-order,
ARMA-type equations. Due to the excessive numbers of possible
predictors that comprise such reduced systems, variable selection pro-
cedures must be applied to identify significant predictor variables.
Stepwise regression procedures for variable selection almost invari-
ably involve trial and error.

4. Given that a tentative reduced system has been identified in item
3—in the sense that a model is chosen to be fitted to the data for pur-
poses of forecasting—one is faced with choosing from a variety of
estimation procedures which may or may not include Bayesian learn-
ing. Following estimation, the effectiveness of each fitted forecasting
model must then be evaluated.

5. Risk assessment then comes into play. This involves the task of mod-
eling volatility associated with forecasts for price changes or game
outcomes. Volatility forecasting is typically in terms of GARCH-type
systems of equations, where dependent variables are defined by resid-
ual squares and cross products that result from the fitted forecasting
equations for price changes and game outcomes.

6. Finally, model effectiveness ultimately depends on frequent model
updates that address gradual and abrupt drift scenarios. For real-time
forecasting under such scenarios, continual model updates are the
norm.

These complexities were aptly described by Jenkins and Alavi (1981)
as the curse of higher dimensionality . The curse has many added facets.
For example, if long-term relations exist between processes, disequilibria
between such relations (termed between-relation shocks) are related but
not redundant with disequilibria within processes (termed within-relation
shocks and quantified by MA variables in ARMA processes). Both shock
types usually have direct effects on subsequent outcomes within one or
more of the simultaneous equations. Effects of the two shock types are
typically confounded in the estimation stages.

There is yet another modeling complication. In the human behavioral
markets under study, the situation arises periodically where sufficiently
large shocks [as in Gould’s punctuated equilibrium (Gould, 1984)] alter
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model structure, either temporarily or on a longer-term basis. During these
periods, effective forecasting may not be possible. In such situations, the
objectives are to anticipate excessive volatility (if at all possible), to rec-
ognize the increased forecasting risks, and then to reformulate an effective
model structure with the apparent return of stability.

We begin by considering systems of simultaneous, nonstationary time
series with non-time-varying coefficients. Long-term relations/associations
between such series are said to be cointegrated under the following condi-
tions:

Definition 9.1.1: A vector z(t) of m simultaneous, nonstationary time
series is said to be cointegrated if each individual series must be differenced
[e.g., dz(t) = z(t )− z(t − 1)] to make it stationary and if there exists a
linear combination of z(t), say, �′z(t), that defines a stationary process for
some nonzero vector � (termed a cointegrating vector).1

Cointegration can be illustrated in terms of the simultaneous price and
volume movements depicted in candlestick charts. One simplistic measure
of price volatility is in terms of the differences between highs and lows,
H (t) − L(t). Suppose that H (t) and L(t) can be modeled individually as
stationary AR processes:

dH (t) = λ11dH (t − 1) + λ12dL(t − 1) + δ1(t),

dL(t) = λ21dL(t − 1) + λ22dH (t − 1) + δ2(t), (9.1.1)

where d(·) denotes first differences, the λ’s denote direct effects, and the δ’s
denote contemporaneous model errors. Aside from possible effects of MA
terms, bilinear terms and time-varying coefficients, a shortcoming of (9.1.1)
is that valuable long-run information may be lost if there exists a long-term
relation between H (t) and L(t). Given such a relation, the between-relation
shocks may affect subsequent changes in dH (t) and dL(t).

From Definition 9.1.1, the vector (H (t), L(t))′[= z(t), say] is defined by
two simultaneous, nonstationary time series, each of which have been dif-
ferenced to make them stationary, as in (9.1.1). Then H (t) and L(t) are
cointegrated if there exists a linear combination between the two vari-
ables: say,

H (t) = �0 + �1L(t) + ε(t), (9.1.2)

1Recall that a stationary time series is a stochastic process whose joint probability distri-
bution does not change when shifted in time or space. As a result, parameters such as the
mean and variance, if they exist, also do not change over time or position.
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that defines a stationary process. To test for stationarity in (9.1.2), the
customary procedure is to apply ordinary least squares (OLS) in (9.1.2),
estimate ε(t) in terms of the residuals e(t), and then reapply OLS in esti-
mating the coefficient ρ in the regression equation

de(t) = ρe(t − 1) + δ(t); (9.1.3)

de(t) = e(t) − e(t − 1). If

H0 : ρ = 0 is rejected in favor of Ha : ρ < 0, (9.1.4)

H (t) and L(t) are cointegrated. If H0 is not rejected, H (t) and L(t) are
not cointegrated (Granger, 1983). MacKinnon (1991) provides tables for
testing H0 : ρ = 0 for any sample size and also when the number of regres-
sors in (9.1.2) is increased—as is the case when the e(t) display serial
correlation:

de(t) = ρe(t − 1) + ρ′de(t−) + δ(t), (9.1.5)

where de(t−) contains lags of de(t) with effects denoted by elements of
the vector ρ.

Equations (9.1.1) to (9.1.5) are illustrated in terms of weekly data from
1/5/99 to 10/29/01 for the NASDAQ Composite index ($COMPX). This
time period encompasses the peak of the high-tech bubble; see Figure 9.1.1
for the corresponding candlestick chart that excludes volume trends. Appli-
cation of OLS in (9.1.2) yields

H (t)∧ = −21.1 + 1.09572.1L(t), R2 = 0.973. (9.1.6)

Letting H (t) = H (t)∧ + e(t), we obtain the following result in fitting
(9.1.5) through OLS estimation:

de(t)∧ = 0 − 0.2753.39e(t − 1) − 0.2082.29de(t − 1)

− 0.1662.00de(t − 2), R2 = 0.226. (9.1.7)

(Absolute Student t values are given by the coefficient subscripts.) Under
(9.1.4)–(9.1.5), H (t) and L(t) are cointegrated.

As a second illustration of cointegration, consider the daily candlestick
chart in Figure 9.1.2 for Exxon Mobile (XOM) from 9/1/07 to 2/2/09. Fitting
(9.1.2) through OLS, we have

H (t)∧ = 14.62021.9 + 0.854106.3L(t), R2 = 0.969. (9.1.8)
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Figure 9.1.1 Weekly candlestick chart for the NASDAQ Composite Index ($COMPX) from
1/5/99 to 10/29/01.

Figure 9.1.2 Daily candlestick chart for Exxon Mobil (XOM) from 9/1/07 to 2/2/09.
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Fitting (9.1.5) through OLS, we have

de(t)∧ = −0.2334.5.1e(t − 1) − 0.3545.52de(t − 1) − 0.1552.44de(t − 2)

− 0.1632.71de(t − 3) − 0.0500.96de(t − 4), R2 = 0.273.

(9.1.9)

As in (9.1.7), (9.1.9) is an illustration of cointegration, although with a
different structure regarding serial correlations.

9.2 FROM CANDLESTICKS TO COINTEGRATION

In his 1987 paper with Robert Engle, Clive Granger formalized the cointe-
grating vector approach and subsequently shared a 2003 Nobel prize for his
contribution to the technique’s development. Conceivably, late 20th-century
cointegration had its genesis in 18th-century Japanese candlestick charts.

In a historical perspective on candlestick charts, Nisson (1991) states that
the charts provided their originator with profitable insights into the market
psychology of the Osaka Rice Exchange in feudal Japan (see Section 5.1).
Since market psychology may be quantified at least conceptually in terms
of cointegrated time processes that oscillate between poles of rational and
irrational behavior, parallels may be drawn between cointegrated processes
and candlestick charts.

Consider the m = 7 nonstationary time series described by the daily
candlestick chart for the NASDAQ-100 Index (QQQQ) in Figure 9.2.1.
Relations appear to exist between the seven series. In particular, the bearish
patterns that appear at each of the relative maxima may be viewed in terms
of disequilibria between series. For example, the bearish engulfing patterns
on 3/20, 4/7, and 5/13 (see boxes 1, 2, 4, and 5) and the dark cloud cover
on 4/27 (see box 3) are accompanied by (1) increasing distances between
the two moving averages and (2) abrupt changes from consecutive bullish
candlesticks to a bearish candlestick. Moreover, distances between 5- and
20-day moving averages are seen to oscillate between positive and negative
values. Disequilibria appear more likely to occur when such differences
become sufficiently large, in which case they tend to return to a norm.

The candlestick–cointegration analogy underlies the following modeling
guidelines.

1. Candlestick charts, as presented in this book, provide a rough guide to
near-term forecasting during periods of apparent market inefficiency;
or, for the skeptics, they are an informative picture of what has hap-
pened in the past.
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Figure 9.2.1 Daily candlestick chart for QQQQ, an exchange-traded fund related to the
performance of the NASDAQ-100 Index.

2. Indeterminate trends may reflect periods of market efficiency or uncer-
tainty (when effective forecasting may be difficult or not possible).

3. When trends are indeterminate, a common recourse is to reevalu-
ate the trend in terms of different time periods; for example, if the
candlestick trend defined by days is indeterminate, switch to candle-
sticks defined by hours or minutes or, more conservatively, possibly
by months.

4. Modeling short-term movements in cointegrated time series should go
hand-in-hand with accompanying candlestick graphics.

5. Major discrepancies between model forecasts and graphic projections
are contentious and require investigation through model updates.

6. Finally, candlestick configurations that are said to be bullish, bear-
ish, or otherwise should be evaluated for predictive validity in the
modeling procedure either directly or indirectly.

Due to the large number of bullish and bearish patterns that have been
documented in the numerous chartist Web sites, quantifying each individual
pattern in modeling evaluations is a major task. Such quantification could
begin with the specification of a dummy variable for each pattern—an
approach that quickly becomes tedious, especially with the inclusion of



140 SIMULTANEOUS FINANCIAL TIME SERIES

candlestick positionings vis-à-vis the oscillating moving average trends and
concurrent volume trends.

As an alternative to dummy variables, the following candlestick pattern
approximations are explored. For each of the time series depicted in the
candlestick chart, suppose that the focus is on the forecast for time t . Then
short-term trends within each time series are quantified in terms of the past,
short-term linear (i.e., straight line), quadratic, and cubic trends, where past,
short-term is defined in terms of, say, the four or five time periods prior to
time t .

For example, if, in Definition 9.1.1, zi (t) denotes the i th of the m vari-
ables in the vector z(t), the linear (LIN ), quadratic (QD), and cubic (CB )
trends within zi (t) over the past four time periods can be based on the
orthogonal polynomials given as follows:

LINzi (t − 1) = [3zi (t − 1) + zi (t − 2) − zi (t − 3) − 3zi (t − 4)]/20,

QDzi (t − 1) = [zi (t − 1) − zi (t − 2) − zi (t − 3) + zi (t − 4)]/4,

CBzi (t − 1) = [zi (t − 1) − 3zi (t − 2) + 3zi (t − 3) − zi (t − 4)]/20.

(9.2.1)

The m = 8 variables under study in z(t) are O(t), H (t), L(t), C (t), the
slower and faster moving averages for C (t), v(t) = loge V (t), and the mov-
ing average of v(t)—as discussed in (5.1.1) for daily candlesticks. The
trends in (9.2.1) may be redefined so that they apply, for example, to longer
periods of time (such as for five-period patterns 9 and 10 in Table 5.1.1).

The conjecture is that bullish and bearish patterns reflect disequilibria
between and/or within cointegrated time series, and that these patterns can
be quantified in terms of unusual values of individual short-term trends
and/or in terms of disparities between and/or within such trends for at least
two of the time series.

For example, with reference to (9.2.1), the bearish engulfing and dark
cloud patterns (see patterns 2 and 4 in Table 5.1.1) may be described by
the following trend disparities. Prior to time t , a large negative quadratic
trend in the closing prices from t − 4 to t − 1—denoted by QD(close) �
0—is accompanied by positive linear and/or quadratic and/or cubic trends in
opening prices—denoted, respectively, by LIN (open)> 0, QD(open)> 0,
and CB(open)> 0. Alternative disparities for this pattern could be described
in terms of (1) QD(close) � 0, accompanied by positive trends through
H (t − 1) and/or O(t − 1) or (2) negative quadratic and/or cubic trends
in the candlestick bodies through B(t − 1) [where B(t) = O(t) − C (t)]
accompanied by positive trends in one or more of the other processes.
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For the bullish engulfing and piercing patterns (see patterns 1 and 3
in Table 5.1.1), QD(close) � 0 is accompanied by negative linear and/or
quadratic and/or cubic trends in the corresponding opening prices and highs.
Significant quadratic or cubic parallelisms may also indicate changes in
directions, such as the distinct quadratic trends in patterns 11 and 12.

Suppose that bullish and bearish configurations do, in fact, reflect dise-
quilibria between and/or within cointegrated processes and are adequately
quantified in terms of the trend disparities between and/or within trends
comprising the configurations. If so, then disequilibria variables—the con-
founded within- and between-relation shocks—can then be approximated
in terms of the disparity variables.

For larger systems of equations, conventional methods of estimating dis-
equilibria variables (as discussed in Section 9.3) are far more cumbersome
than estimating disparity variables. Modeling simultaneous time series is
thus simplified when the former can be approximated by the latter. This
modeling simplification will be shown to lead to effective forecasting during
periods of market inefficiency.

9.3 COINTEGRATION IN TERMS OF AUTOREGRESSIVE
PROCESSES

To begin the model identification stage, z(t), representing the m simultane-
ous time series in Definition 9.1.1, is modeled in terms of the vector AR(p)
process:

z(t) = A1z(t − 1) + A2z(t − 2) + · · · + Apz(t − p) + ε(t). (9.3.1)

This process is rewritten in the following error correction form (Johansen,
1995):

dz(t) = Bz(t − 1) + B1dz(t − 1) + B2z(t − 2) + · · ·
+ Bp−1dz(t − p + 1) + ε(t), (9.3.2)

dz(t) = (zh(t) − zh(t − 1); Bi∗ = −(Ai+1 + · · · + Ap), i ∗

= 1, . . . , p − 1,

B = A1 + · · · + Ap − Im . (9.3.3)

Here Im denotes the m × m identity matrix. Regarding the model error ε(t),
it is assumed that E (ε(t)) = 0 and E (ε(t)ε(t)′) = �:

ε(t) : (0,�). (9.3.4)
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At a later modeling stage, � is assumed to be time varying to accommodate
volatility modeling.

The m × m matrix B in (9.3.3) is rewritten as B = CD , where C is on
the order m × m∗, D is of order m∗ × m , and m∗ < m . Regarding

Bz(t − 1) = CDz(t − 1)C u(t − 1), (9.3.5)

rows of D define the m∗ < m cointegrating vectors, while elements of
Dz(t − 1) = u(t − 1) represent the between-relation disequilibria at time
t − 1; elements of C denote effects of u(t − 1) on dz(t). The rank of B
determines the value of m∗.

When m = m∗, (9.3.1) defines a system of stationary rather than non-
stationary processes and is not of interest in the current context. When, in
(9.3.3), A1 + · · · + Ap − Im = 0, then B = 0 and there are no cointegrating
relations.

Based on notation in (9.3.5), (9.3.2) is rewritten as

dz(t) = C u(t − 1) + Bz(t − 1) + B1dz(t − 1) + B2dz(t − 2 )+ · · ·
+ Bp−1dz(t − p + 1) + ε(t). (9.3.6)

Johansen’s maximum likelihood procedure (1995) for estimating u(t − 1)

relaxes the assumption that the cointegrating vectors defined by D in (9.3.5)
are unique. D and subsequently u(t − 1) are then estimated indirectly; that
is, OLS estimation in (9.3.2) provides the estimate B∧ of B , whereupon
D∧, the estimate of D , is based on the estimated rank of B∧; u(t − 1) is
then estimated in terms of D∧z(t − 1).

A simpler alternative to the Johansen procedure for estimating u(t − 1)

is to apply factor analysis (Afifi and Clark, 1996) as a means of reducing the
dimensionality of z(t − 1) in terms of m∗ < m linear combinations thereof.
If the m∗ linear combinations (termed factors) define stationary processes,
the factor scores associated with the factors provide an estimate of u(t − 1)

directly. Suppose, however, that one or more of the factors do not define a
stationary process. Aside from the implication that the variables involved
in the particular factor are not cointegrated, it may be the case that the
between-relation associations are time varying. If so, one alternative is to
allow for time-varying effects of disparity variables associated with z(t − 1),
as discussed in Section 9.2 and illustrated in the following section.

Model (9.3.6) can be deduced intuitively as follows. Instead of initiating
the modeling procedure with the assumption of an AR process in (9.3.1),
suppose that we begin with an ARMA(p, q = 1) process that includes a
vector of exogenous variables denoted by x(t) with coefficient matrix Bx ;
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that is,

dz(t) = Bz(t − 1)+�i>0Bi dz(t − i)+Bx x(t) + C ε(t − j) + ε(t).

(9.3.7)

Then (9.3.2) becomes

dz(t) = Bz(t − 1)+�i>0Bi dz(t − i) + Bx x(t) + C [z(t − 1))

− E (z(t − 1)] + ε(t), (9.3.8)

where E (·) denotes expectation. If C [E (z (t − 1)] is reflected in terms of
the other predictor variables, then, approximately,

dz(t) = B∗z(t − 1) + �i>0Bi dz(t − i) + Bx x(t) + ε(t), (9.3.9)

where B∗ = B + C . But (9.3.9) is the same as (9.3.2) except for the covari-
able vector. By this reasoning it becomes clearer that the u(t − 1) in (9.3.6)
is a reflection of both within- and between-relation shocks.

9.4 ESTIMATING DISEQUILIBRIA THROUGH FACTOR
ANALYSIS

The factor analysis approach to estimating between-relation disequilibria is
illustrated in terms of the data in Figure 9.4.1, a daily candlestick chart of
price and volume trends (10/18/09 to 2/27/09) for Baidu (BIDU). (As of
late 2009, Baidu held 70% of the Chinese Internet search market, while
Google’s share was estimated at 26%.)

The eight processes depicted in Figure 9.4.1 include the four time series
comprising a candlestick [O(t), H (t), L(t), and C (t)] and two moving aver-
ages for C (t), the 5- and 20-day moving averages based on successive days
just prior to C (t) (as denoted by Cb5 and Cb20 ). The lower portion of the
chart includes the volume V (t)] and the 5-day moving average of V (t)
based on successive days prior to V (t). In the analysis, v(t) = loge V (t)
replaces V (t), and vb5, the corresponding 5-day moving average of v(t),
replaces the 5-day moving average of V (t).

Linear combinations of z(t − 1) in (9.3.5) are based on the correlation
matrix of the zh(t − j ), j = 1, . . . , T ; h = 1, . . . , m . Principal components
analysis is applied to the correlation matrix in obtaining m∗<m orthogonal
eigenvectors associated with sufficiently large eigenroots. The m∗ eigen-
vectors (or factors) are then rotated to preserve orthogonality and allow for
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Figure 9.4.1 Daily candlestick chart for Baidu (BIDU) from 10/18/09 to 2/27/09.

easier interpretation. If each rotated factor defines a stationary process, the
factors are estimates of the cointegrating vectors [given by the rows of D
in (9.3.5)]. Moreover, factor scores corresponding to each of the m∗ factors
provide a direct estimate of elements of u(t − 1) = Dz(t − 1).

Table 9.4.1 presents results of principal components analysis applied to
the 8 × 8 correlation matrix associated with the Baidu data. The analysis
shows that the first three components (or eigenvectors) account for 90.31%
of the information contained in the original eight variables. As a rule of
thumb, only eigenvectors with eigenroots > 1 are retained. However, our
applications will include eigenvectors with roots somewhat less than 1 if
such linear combinations make sense and can be shown to be stationary
processes. For this illustration, the first three components are retained and
rotated. Results of varimax rotation, given in Table 9.4.2, show that the first
factor is the relation among O(t), H (t), L(t), and C (t), the second between
the two moving averages for C (t), and the third between v(t) and its 5-day
moving average.

The question remains as to whether the three linear combinations in
Table 9.4.2 define stationary processes. To answer this question, the factor
scores corresponding to each linear combination are analyzed in terms of
model (9.1.4). Denoting the factor scores for the i th linear combination
as ui (t), i = 1, 2, 3, and setting dui (t) = ui (t) − ui (t − 1), we follow the
procedure in (9.1.5) and fit

dui (t) = ρi ui (t − 1) + ρ′
i dui (t−) + δ(t) (9.4.1)
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TABLE 9.4.1 Principal Components Analysis Applied to the BIDU Correlation Matrix

Extraction Sums of Rotation Sums of
Initial Eigenvalues Squared Loadings Squared Loadings

Percent of Cumulative Percent of Cumulative Percent of Cumulative
Component Total Variance % Total Variance % Total Variance %

1 4.035 50.432 50.432 4.035 50.432 50.432 3.727 46.585 46.585
2 2.369 29.615 80.047 2.369 29.615 80.047 1.972 24.649 71.234
3 0.821 10.263 90.309 0.821 10.263 90.309 1.526 19.075 90.309
4 0.403 5.039 95.349
5 0.229 2.861 98.210
6 0.093 1.164 99.374
7 0.034 0.419 99.793
8 0.017 0.207 100.000

TABLE 9.4.2 Rotation of the First Three Eigen Vectors in Table 9.4.1a

Component

1 2 3

O 0.906 −0.111 0.306
H 0.955 0.069 0.239
L 0.953 −0.264 −0.002
C 0.960 −0.121 −0.041
Cb5 0.359 0.021 0.900
Cb20 −0.108 0.573 0.730
Lnv −0.074 0.858 0.172
lnvb5 −0.129 0.898 0.016

aRotation method: Varimax with Kaiser normalization.

through OLS estimation. Results are as follows:

du1(t)
∧ = −0.2122.99u1(t − 1) + 0.3232.83du1(t − 1), (9.4.2)

du2(t)
∧ = −0.1022.33u2(t − 1) − 0.1862.24du2(t − 4), (9.4.3)

du3(t)
∧ = −0.1132.12u3(t − 1) − 0.2344.04du3(t − 4), (9.4.4)

where du1(t − 1), du2(t − 4), and du3(t − 4) denote significant serial
correlations.

Since results in (9.4.2) to (9.4.4) indicate that each of the three linear
combinations defines a stationary process, the factor scores corresponding
to the three factors at time t − 1 provide a direct estimate of u(t − 1) =
Dz(t − 1). However, alternative approaches should be considered when fac-
tor scores do not define stationary processes or have insignificant effects
on dz(t). One alternative is to apply the Johansen maximum likelihood
procedure. A second alternative is to quantify the confounded effects of
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the between- and within-relation shocks in terms of the disparity variables
discussed in Section 9.2 and to evaluate whether effects of disparity vari-
ables are time varying. Through trial and error, the latter alternative appears
to provide a promising, less-laborious, effective forecasting approach.

9.5 SIMULTANEOUS TIME SERIES: ADAPTIVE DRIFT
MODELING

Model (9.3.6) is generalized in terms of an adaptive system by allowing for
time-varying coefficients:

dz(t) = C (t)u(t − 1)+�i Bi (t)dz(t − i) + ε(t), (9.5.1)

where i = 1, . . . , p − 1. The hth of the m equations in (9.5.1) is written

dzh(t) = Ch(t)′u(t − 1) + �i Bhi(t)′dz(t − i) + εh(t). (9.5.2)

As discussed in Section 4.3, one approach to modeling Ch(t) and Bhi(t)
is to assume that coefficients are generated by a random walk (West and
Harrison, 1997):

Ch(t) = Ch(t − 1) + δCh(t)∗,

Bhi(t) = Bhi(t − 1) + δBh(t)∗,

where the δ-h(t)∗ denote model errors. However, for the markets under
study, a more realistic assumption is that changes, if any, in coefficients are
due to shocks that occur at previous times. Accordingly, coefficients are
assumed generated by lags of u(t):

Ch(t) = Ch + �k Chk u∗(t − k) + δCh(t), (9.5.3)

Bhi(t) = Bhi + �k Bhik u∗(t − k) + δBh(t), (9.5.4)

where the Chk and Bhik are matrices of coefficients for k ≥ 1, and δCh(t)
and δBh(t) denote model errors.

For gradual drift,

u∗(t − k) = u(t − k). (9.5.5)

For abrupt drift where elements of u(t − k) and are sufficiently large in
modulus,

u∗(t − k) = u(t − k)+Auvu(t−). (9.5.6)
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Elements of Au denote the effects of vu(t−), a vector of variables having
significant, direct effects on the particular abrupt drift scenario.

The vector vu(t−) in (9.5.6) is of particular importance when cointegra-
tion is time varying and/or when the confounded effects of lagged between-
and within-relation shocks are reflected inadequately by the u(t − k). In
these situations, vu(t−) is comprised of lagged disparity variables [or dis-
parities between and/or within near-term trends in elements of z(t − i) for
i>0], which are intended to compensate for shortcomings of the u(t − k).

Substitution of (9.5.3)–(9.54) into (9.5.2) results in a linear, second-
order reduced model in the following variables: lags of dz(t) [denoted
by dz(t−)], lags of the u(t − k) [denoted by u(t−)), vu(t−)], and
corresponding interactions. In abbreviated notation, the second-order
reduced model is written

dzh(t) = fh [dz(t−), u(t−), vu(t−);�] + εRh(t) = fh + εRh(t), (9.5.7)

where � denotes the parameter vector. Since all the variables are known,
the stepwise regression procedures discussed in Section 7.3 may be applied
in identifying appropriate predictor variables and estimating their effects.
Thereafter, one may recover information provided by moving average vari-
ables in the event that they are not adequately reflected by u(t−) and
vu(t−).

Aside from these single-equation procedures, there are simultaneous,
system-wide estimation procedures that provide increased efficiency when
the reduced system of equations is restricted (Mallios, 1989; Zellner,
1971).

9.6 SIMULTANEOUS TIME SERIES: ADAPTIVE VOLATILITY
MODELING

Population and sample forms of model (9.5.7) are written

dzh(t) = fh + εRh(t) = f ∧
h + eRh(t), (9.6.1)

where f ∧ is the sample form of f and eRh(t) is the residual corresponding to
εRh(t). Following procedures discussed in Section 4.4, assume that eRh(t)2

follows a GARCH(ph , qh ) process with time-varying coefficients:

eRh(t)2 = µh(t) + �i∗≥1ϕhi∗(t)eRh(t − i ∗)2

+ �i∗∗≥1ψhi∗∗(t)δh(t − i ∗∗) + δh(t), (9.6.2)
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where ϕhi∗(t) denotes the effect of the autoregressive term eRh(t − i ∗)2,
ψhi∗∗(t) the effect of the moving average term δh(t − i ∗∗) = eRh(t)2 −
E [eRh(t)2], and δh(t) the model error.

Analogous to (4.4.3), assume that each of µh(t), ϕhi∗(t), and ψhi∗∗ are
generated in terms of lags of δh(t) in first-order linear regression models.
Substituting the latter expressions for µh(t), φhi∗(t), and ψhi into (9.6.2)
leads to a bilinear reduced model for eRh(t)2. Significant bilinear terms
provide evidence that the GARCH(ph , qh ) process is dynamic. Nonsignifi-
cant bilinear terms indicate that coefficients in (9.6.2) are non-time varying.
Note, however, that since the model for dzh(t) in (9.5.1) allows for time-
varying coefficients and since dzh(t)∧ generates eRh(t)2, it is necessary to
update model (9.6.2) with each update of model (9.5.1) to access whether
(9.6.2) is or is not dynamic.

As a means of modeling volatility, GARCH processes have at least two
shortcomings when applied individually (and not collectively) to equations
that are part of a system of cointegrated equations. The first shortcoming,
discussed earlier, is that eRh(t)2 in (9.6.2) may be biased and misleading
if the model for dzh(t) is ill specified. The second shortcoming is that
model (9.6.2) does not consider information from the other fitted equations
that comprise the system, such as the possible effects of eRh∗(t − i )2, h∗ �=
h, and residual cross products on eRh(t − i )2. When ignored and signifi-
cant, effects of eRh∗(t − i )2 and the cross product eRh∗(t − i )eRh(t − i ) are
pooled with model error in (9.6.2).

9.7 EXPLORATORY MODELING: MARATHON OIL COMPANY

Figure 9.7.1 presents the daily candlestick chart for Marathon Oil Company
(MRO) from 10/24/09 to 1/9/09.

As in Section 9.4, factor analysis is applied to the correlation matrix
associated with the seven time series in Figure 9.7.1: namely,

z(t) = [O(t), H (t), L(t), C (t), cb5(t), cb(20), v = ln V , loge vb5]′. (9.7.1)

The analysis results given in Tables 9.7.1 and 9.7.2 show that rotated eigen-
vectors associated with the two largest eigenroots account for 86% of the
total variation. The first factor is associated with prices and the second
with volumes. Both factors define stationary processes, as shown through
the following analysis of factor scores corresponding to each factor. Let
ui (t), i = 1, 2, denote the factor scores for the i th linear combination and
set dui (t) = ui (t) − ui (t − 1). Following (9.1.5), we fit

dui (t) = ρi ui (t − 1) + ρ′
idui(t−) + δ(t) (9.7.2)
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Figure 9.7.1 Daily candlestick charts for Marathon Oil Company from 10/24/09 to 1/9/09.

TABLE 9.7.1 Principal Components Analysis Applied to the MRO Correlation Matrix

Extraction Sums of Rotation Sums of
Initial Eigenvalues Squared Loadings Squared Loadings

Comp- Percent of Cumul- Percent of Cumul- Percent of Cumul-
onent Total Variance ative % Total Variance ative % Total Variance ative %

1 5.143 64.287 64.287 5.143 64.287 64.287 5.141 64.263 64.263
2 1.744 21.805 86.092 1.744 21.805 86.092 1.746 21.829 86.092
3 0.515 6.432 92.524
4 0.404 5.056 97.580
5 0.095 1.186 98.766
6 0.059 0.740 99.506
7 0.028 0.355 99.861
8 0.011 0.139 100.000

through OLS estimation. Estimates of (9.7.2) are given by

du1(t)
∧ = −0.1294.32u1(t − 1)+0.1571.89du1(t − 1)−0.0630.75du2(t − 1)

and

du2(t)
∧ =−0.1022.54u2(t − 1)−0.1741.92du2(t − 4)+0.1671.82du2(t − 4).

(9.7.3)

These results indicate that both factors in Table 9.7.2 define stationary pro-
cesses. As such, corresponding factors scores are measures of disequilibria.
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TABLE 9.7.2 Rotation of the First Two Eigenvectors in Table 9.7.1a

Factor

1 2

O 0.975 −0.062
H 0.987 0.012
L 0.952 −0.183
C 0.952 −0.103
lg1cb5 0.937 0.118
lg1cb20 0.721 0.519
Lnv −0.018 0.836
lnvb5 −0.080 0.846

aRotation method: Varimax with Kaiser normalization.

The factor analysis results are premised on the assumption that the corre-
lation matrix remains the same over time. If not, cointegration may be time
varying, in which case the factor analysis must be updated with each model
update. To determine the extent to which the correlation matrix varies, a
sensitivity analysis was performed as follows. Correlation matrices were
determined for each of the daily three-month periods prior to and after the
time period presented in Figure 9.7.1. Results show that when they occur,
changes in the correlation matrix are minimal to very gradual. The impli-
cation is that model updates through drift modeling does not necessarily
require a corresponding update of the factor analysis results, which may be
required only periodically. This procedure is followed for all forthcoming
modeling exercises.

For the BIDU analysis in Tables 9.4.1 and 9.4.2, the three eigenvec-
tors associated with the three largest eigenroots are rotated, whereas for
the MRO analysis in Tables 9.7.1 and 9.7.2, only the first two eigenvec-
tors are rotated. In practice, eigenvectors with eigenvalues of less than 1
are typically discarded. However, in our analysis, eigenvectors with eigen-
values of less than 1 may be retained and rotated if the eigenroots are
sufficiently close to 1. For the MRO analysis, only the first two eigenvec-
tors are rotated, since the third eigenroot (with a value of 0.515) is well
below 1. For the BIDU analysis, the first three eigenvectors are rotated
since the third eigenroot (with a value of 0.821) is much closer to 1 and
accounts for a significant 10% of the variation. The task of selecting the
largest eigenvectors may involve trial and error, since it is necessary to
show that all the rotated eigenvectors define stationary processes.

For MRO, the focus is on forecasting that dzh(t) correspond-
ing to the daily change in per share closing prices, denoted by
dC (MRO, t) = C (MRO, t) − C (MRO, t − 1). To illustrate the modeling
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procedure, modeling is based on daily MRO data from 8/1/08 through
11/20/08 inclusive. Figure 9.7.1 depicts 11/20/08 in terms of the large
dark body lying below the moving average band; see box 1. The low
for the day is also the absolute minimum for all days depicted. (Events
of 11/20/08 describe a selling climax , where a sharp drop in the closing
price during a downward trend is accompanied by an excessive trading
volume.)

From a chartist perspective, a bullish harami pattern (see pattern 9 in
Table 5.1.1) is contained in box 1. The question at hand is whether the
model forecast foretold the turning point before observing the white can-
dlestick on 11/21/08. The answer is yes, but prior to discussing forecasting
effectiveness, we present the modeling result for the model update through
11/20/08.

Based on model (9.5.7), the model forecast for dC (MRO, t ) is given by

dC (MRO, t)∧ = −39.195.49[LIN {LW (t − 1)}][LIN {R(t − 1)}]
− 5.514.57[LIN {H (t − 1)}][QD{R(t − 1)}]
− 0.902.78[LIN {H (t − 1)}][u2(t − 1)]

+ 5.022.76[QD{R(t − 2)}][v(t − 1)−vb5(t − 1)]. (9.7.4)

Although coefficients and/or predictor variables are subject to either slight
or significant change with each model update, (9.7.4) is discussed for pur-
poses of interpreting the effects of disparity variables (usually appearing
in terms of interactions), evaluating the effectiveness of forecasts over a
short span of days following 11/20/08, comparing model forecasts with
chartist forecasts, and assessing criteria for determining when model updates
become necessary.

Based on the short-term trends defined in (9.2.1), individual variables
comprising the four interactions in (9.7.4) are identified as follows:
LIN {LW (t − 1)} is the linear (straight line) trend in the lower candlestick
wick [defined by LW (t) = min[O(t), C (t)] − L(t)] through time
t − 1; LIN {R(t − 1)} is the linear trend in the range, R(t) = H (t) − L(t),
through time t − 1; LIN {H (t − 1)} is the linear trend in the high, H (t),
through time t − 1; QD{R(t − 1)} is the quadratic trend in R(t) through
time t − 1; u2(t − 1), the factor score associated with the second factor in
Table 9.7.1, measures the shock at time t − 1 that corresponds to the linear
relation between the volume variables; QD{R(t − 2)} is the quadratic
trend in the range through time t − 2; and loge V (t − 1) − loge Vb5(t − 1)

is the difference between loge volume and its 5-day moving average at
time t − 1.
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Although the four interactions in (9.7.4) are interrelated, the negative
effect of the first reflects bearish volatility when it is the product of lin-
early increasing ranges LIN {R(t − 1)>0] and linearly increasing lower
wicks (LIN {LW (t − 1)>0]. Note, however, that LIN {R(t − 1) should be
interpreted in light of QD{R(t − 1), which appears in two of the other
interactions. At issue is which of the two, LIN {R(t − 1) or QD{R(t − 1),
dominates a particular scenario.

The effect of the second interaction is counterbalanced by the effect of
the fourth interaction. Namely, the second interaction has a negative effect
when LIN {H (t − 1)}>0 (where the high’s are increasing linearly) and
QD{R(t − 1)}>0 (which describes an abrupt, short-term upward surge in
the ranges and volatility). This negative effect is counterbalanced by the pos-
itive effect of the fourth interaction when QD{R(t − 2)}>0 (which describes
a positive upward surge in the ranges through time t − 2) that is followed
by a supporting surge in the volume [as measured in terms of loge V (t −
1) − loge Vb5(t − 1)>0]. However, the latter positive effect may be coun-
terbalanced by the third interaction when loge V (t − 1) − ln Vb5(t − 1)>0
is accompanied by u2(t − 1)>0 (or when the surge in volume is excessive,
as measured by a larger positive value of the shock associated with the
linear combination of the volume variables in Table 9.7.1).

Runs that accompany an uptrend or downtrend are common indicators of
forthcoming relative maxima or minima. (In Figure 9.7.1, note the run of
six consecutive white bodies beginning with the first white body in box 5.)
Overviews of candlestick charts indicate that successions of bullish bodies
[B(t) = C (t) − O(t)>0] greater than 4 or 5 often portend short-term profit
taking and that comparable successions of bearish bodies [B(t)<0] give
rise to short-term buying and/or covering short positions. However, runs
are often prolonged in the case of price bubbles (see Section 9.8). (Runs
also reflect disparity variables that are predictive indicators in other gaming
situations.2)

Consider next a comparison of candlestick forecasts (CF) with the
model forecasts (MF) for dC (t) in (9.7.4). MF forecasts for 11/21/08
though12/05/09 are correct (in terms of predicting positive or negative
price changes) for all except for 12/2/08 (the forecast is negative) and
12/5/08 (the forecast is negative for the white body in box 3). The correct
MF for the downturn on 11/28/08 (see box 2) is due primarily to the

2The effect of runs has interesting parallels with blackjack strategies when a single deck is
not shuffled after each hand but is used until the deck runs out. When an excess of “tens”
remain in the second and, particularly, the third hands, the strategy is to bet high, since
the probability of winning is greatly increased. A paucity of “tens” results in a lower win
probability. Longer series of runs in candlestick bodies and a paucity or excess of “tens”
tend to be effective short-term predictors.)
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second interaction in model (9.7.4). Although the model (9.7.4) forecast
is negative for the white body upturn in box 3 (on 12/5/08), a model
update through12/5/08 correctly forecasts positive price changes through
the next three trading days. With continuing model updates, especially at
or near key turning points such as in boxes 3, 4, and 5, the explanatory
interactions in forecasting models such as model (9.7.4) usually change.

As mentioned earlier, the candlestick forecasts do not usually anticipate
upturns or downturns above or below the moving average bands. However,
once these turns are observed and associated with bullish or bearish patterns,
short-term forecasts will often have merit. Note, for example, the positive
harami pattern in box 1, the negative harami pattern in box 2, the positive
piercing pattern in box 3, the final bearish engulfing pattern in box 4, the
bullish breakaway pattern in box 5, and the bearish evening star in box 6.

Beginning in mid-December with the bearish piercing pattern (the first
dark body in box 4), daily model updates are hit and miss. However, given
the bearish engulfing pattern in box 4 (the last dark body in box 4), updated
model forecasts are mostly correct through the bullish breakout pattern in
box 5. Given a model update following box 5, forecasts are correct through
the bearish evening star pattern in box 6. Thereafter, price movements again
become erratic, so that model updates are again mostly hit and miss. As
mentioned earlier, for such periods of erratic price movements (on a daily
basis), intraday candlestick charts, combined with intraday adaptive mod-
eling, may provide more definitive forecasting. For selected hedge funds,
the duration of a trade is said to last an average of less than 2 days. As
such, intraday trading (based on intraday) modeling would appear to be the
norm, as opposed to our interday modeling of MRO.

In Figure 9.7.1, the data beyond 11/21/08 (the first box) show little
evidence of variance heterogeneity in terms of GARCH modeling. This is
not the case for data prior to 11/21/08, as is evident from an inspection of
the volatile daily price ranges and price changes prior to this date.

9.8 THE HIGH-TECH BUBBLE OF 2000

Figures 9.8.1 and 9.8.2 depict the formation and deflation of the high-
tech bubble in terms of weekly candlestick charts for the Nasdaq-100 index
(COMPX) and Yahoo (YHOO), one of the COMPX components. Irrational
exuberance is said to have driven YHOO share prices from $6 in June 1998
to a high of $125 during the week of 12/27/99. Share prices then collapsed
to $4 by October 2001.

The massive price increases during the second half of 1999 occurred dur-
ing enactment of the Gram–Leach–Bliley Act, signed by President Clinton
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Figure 9.8.1 Weekly candlestick chart for the NASDAQ Index ($COMPX) during formation and
deflation of the high-tech bubble. (Source: MSN Money)

Figure 9.8.2 Weekly candlestick chart for Yahoo (YHOO) during formation and deflation of the
high-tech bubble. (Source: MSN Money)
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on 11/12/99. (In signing the bill, Clinton was counseled by his Treasury
Secretary Larry Summers, former Treasury Secretary Robert Rubin, and Fed
Chairman Alan Greenspan.) The Act repealed the 1933 Glass–Steagall Act,
which had kept commercial banking and insurance separate from investment
banking. A year later, in 2000, Clinton, again on the advice of his coun-
sel, signed legislation to shield derivatives from federal regulation. The
deregulation of derivatives was particularly surprizing since it followed the
meltdown of the hedge fund Long-Term Capital Management, a meltdown
that resulted from speculation in derivatives.3

It has been suggested that the bursting of the high-tech bubble and subse-
quent bear market may have been partially triggered by the adverse findings
of fact in the United States v. Microsoft case, which at the time was being
heard in federal court. The findings, which declared Microsoft a monopoly,
were widely expected in the weeks before their release on 4/3/00.

Peak portions of the high-tech bubble are presented for the NASDAQ
index (Figure 9.8.3), Yahoo (Figure 9.8.4), and two other NASDAQ com-
ponents, Microsoft (Figure 9.8.5) and Citrix (Figure 9.8.6). Cross-sectional
views of NASDAQ components are often useful, since price movements in
one issue often portend and confirm price movements in like-kind issues,
especially when related issues are cointegrated, at least periodically, and
thus tend to move in harmony. (Note: Disappointing quarterly earning
reports for a particular company is a caveat to such harmonious price
movements; see Figure 5.5.1 regarding a disappointing earnings report for
CTXS.)

Except for the MSFT, weekly price increases from early November
1999 through the end of December 1999 are in terms of an unusually
large number of consecutive bullish candlestick bodies where C (t)> O(t)
and C (t)> C (t − 1). (These are the positive or bullish runs of can-
dlestick bodies disussed in Section 9.7.) Following these bullish runs,
bearish or nearly bearish patterns are indicated on 1/3/00; see box
1 in each figure. For COMPX and CTXS the negative patterns are
misleading, whereas for YHOO and MSFT the indicators lead correctly
to short-term price declines. Except for CTXS, the decisive bearish
indicators that precede major price declines occur the trading day prior

3During the fiscal meltdown in Greece in 2010, James Richards, the former general counsel
of Long Term Capital Management, stated: This dynamic of pushing out spreads and calling
in margin is the same one that played out at Long Term Capital Management in 1998 and AIG
in 2008 and it is happening again this time in Europe. . . . Credit default swaps let anyone bet
on anything. We have given Wall Street huge incentives to burn down your house. . . . Your
neighbor cannot buy insurance on your house because they have no insurable interest in it.
Such insurance is considered unhealthy because it would cause the neighbor to want your
house to burn down—and maybe even light the match (Richards, 2/12/10).
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Figure 9.8.3 Weekly candlestick chart for Yahoo (YHOO) from 11/1/99 to 1/1/01. (Source:
MSN Money)
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Figure 9.8.4 Weekly candlestick chart for Microsoft (MSFT) from 11/1/99 to 1/1/01. (Source:
MSN Money)
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Figure 9.8.5 Weekly candlestick chart for the NASDAQ Index ($COMPX) from 11/1/99 to
1/1/02. (Source: MSN Money)
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Figure 9.8.6 Weekly candlestick chart for Citrix (CTXS) from 11/1/99 to 1/1/01. (Source: MSN
Money)
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to 4/3/00; see box 2 in Figures 9.8.3–9.8.5. For CTXS, the decisive
bearish tombstone pattern occurs several days earlier; see box 2 in
Figure 9.8.6.

For major market upturns or downturns such as those depicted in
Figures 9.8.3–9.8.6, it is not unusual that two or even three successive
relative maxima (minima) occur before a major downturn (upturn)—or
before the two moving average curves cross one another decisively.
On the other hand, a sustained series of candlesticks that lie on and
especially above the moving average band—when the width of the band is
increasing—is often indicative of an overbought equity. The overbought
condition is reinforced if trading volumes are not sufficient to support the
price increases.

The moving average band and the placement of the candlesticks relative
to the band may be viewed as a financial variation of time-varying quality
control charts. Overbought and oversold conditions (where candlesticks lie
outside the band) may be indicative of market inefficiency, whereas plateau
periods (as illustrated by price changes for CTXS from 7/3/200 to 1/1/2001)
may be indicative of greater market efficiency. Clearly, traders who sold
and/or shorted very near the peak of the bubble capitalized on the irrational
behavior of those who bought. On the other hand, those who sold too soon
missed out on major profits, while those who shorted too soon may have
faced margin calls.

The modeling procedure for YHOO in Figure 9.8.3 follows that given
for MRO in Section 9.7. The YAHOO factor analysis results in Tables 9.8.1
and 9.8.2 are similar to those for MRO in Tables 9.7.1 and 9.7.2. Analysis
of factor scores corresponding to the two factors in Table 9.8.2 indicates that
both factors define stationary processes. As with the MRO factor analysis,
the first factor is a linear combination of prices and the second a linear
combination of volumes.

Through the estimation procedure used in the MRO analysis, model
(9.5.7) is fitted to the Yahoo weekly data from 3/2/98 through the week prior
to the bearish configuration on 1/3/00; see box 1. The resulting forecasting
model is as follows:

dC (YHOO, t)∧ = 2.703.48 − 2.544.04[u1(t − 1)][run{B(t − 1)}]
− 0.396.18[dLW (t − 1)][run{{B(t − 1)}]
− 8.607.10[LIN {v(t − 1)}][CB{R(t − 1)}]
− 1.663.38[CB{UW (t − 1)}][LIN {B(t − 1)}]
− 0.023.87[dL(t − 1)][dR(t − 1)]

+ 1.733.23[LIN {LW (t − 1)}][QD{UW (t − 2)}]. (9.8.1)
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TABLE 9.8.1 Principal Components Analysis Applied to the Yahoo Correlation Matrix

Extraction Sums of Rotation Sums of
Initial Eigenvalues Squared Loadings Squared Loadings

Comp- Percent of Cumul- Percent of Cumul- Percent of Cumul-
onent Total Variance ative % Total Variance ative % Total Variance ative %

1 5.798 72.473 72.473 5.798 72.473 72.473 5.633 70.416 70.416
2 1.614 20.173 92.646 1.614 20.173 92.646 1.778 22.230 92.646
3 0.337 4.211 96.857
4 0.201 2.508 99.365
5 0.030 0.371 99.737
6 0.013 0.168 99.905
7 0.006 0.069 99.974
8 0.002 0.026 100.000

TABLE 9.8.2 Rotation of the First Two Vectors of Table 9.8.1a

Component

1 2

O 0.990 −0.069
H 0.991 −0.044
L 0.987 −0.083
C 0.986 −0.057
lg1cb5 0.979 −0.131
lg1cb20 0.865 −0.306
Lnv −0.073 0.908
lnvb5 −0.114 0.909

aRotation method: Varimax with Kaiser normalization.

Components of each interaction in (9.8.1) are identified as follows. The
notation in (9.7.1) is used throughout to define the eight time series pre-
sented in the candlestick charts. The only difference is that for weekly
charts—as opposed to daily charts—the two volume trends are defined in
terms of weeks rather than days. The shock corresponding to the first factor
score at time t − 1 is denoted by u1(t − 1). The variables LIN {·}, QD{·},
and CB{·} denote the linear, quadratic, and cubic trends within processes,
as defined in (9.2.1), [e.g., LIN (v(t − 1) is the linear trend in v = loge V
from t − 4 to t − 1. Changes in the values of the LW and L from t − 2 to
t − 1 are denoted by dLW (t − 1) and dL(t − 1), respectively. Runs in can-
dlestick bodies (i.e., the number of successive positive or negative bodies)
through time t − 1 are denoted by STR{B(t − 1)}.

The first two interactions indicate that an increasing number of pos-
itive bodies through time t − 1 has an increasingly negative effect on
dC (YHOO, t)∧ when the lagged shock corresponding to the first factor (the
linear combination of prices) is greater than expected and dLW (t − 1)>0.
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This implies that there has been an uninterrupted increase in prices, that
the general increase is above expectations, and that the lower wick has just
increased, which may indicate profit taking (and the possible formation of
bearish hammer).

The combined negative effects of the interactions [LIN {v(t − 1)}]
[CB{R(t − 1)}] and [dL(t − 1)][dR(t − 1)] are a bearish reflection of
volatility; that is, bearish volatility can be described by larger, short-term
increases in the volumes and ranges that are finalized or reinforced by
increases in both the low and the range. The negative effect of the
interaction [CB{UW (t − 1)}][LIN {B(t − 1)}] reflects the formation of a
bearish tombstone where the upper wick increases abruptly while prices
are increasing.

Model (9.8.1) correctly forecasts a decrease in dC (YHOO, t) for the
bearish configuration on 1/3/00 as well as price decreases over the next three
weeks and a price increase associated with the positive engulfing candlestick
four weeks following 1/3/00. However, a price plateau occurs over the next
six weeks wherein daily updated model forecasts are hit and miss through
the week ending with the larger white body on 3/20/00—which is just one
week prior to the major downturn on 3/27/00; see box 2.

A model update through 3/20/00 correctly forecasts a price decrease asso-
ciated with the bearish dark cover on 3/27/00 as well as the decreases the
following two weeks. Thereafter, there is a plateau in prices from 4/17/00
through 8/28/00, during which time updated weekly forecasts are again hit
and miss. The model update through the bearish pattern on 9/25/00 (see
box 3) provides reliable forecasts for the downturn beginning the week of
10/2/00 and nearly all the weeks thereafter.

Since results of GARCH-type modeling may change in response to
changes in the model for dC (YHOO, t ), the time-varying model in (9.6.1)
is applied. Based on the model update for dC (t) through 4/17/00, results of
volatility modeling based on a time-varying GARCH process is as follows:

eR(YHOO, t)2∧ = 9.24 + 0.141.76eR(YHOO, t − 1)2

+ 0.732.86eR(YHOO, t − 3)2

−0.552.05�R(YHOO, t − 3)∧, (9.8.2)

where eR(YHOO, t)2∧ denotes the GARCH estimate of eR(YHOO, t)2;
eR(YHOO, t) = dC (YHOO, t) − dC (YHOO, t)∧; and �R(YHOO, t − 3)∧
= eR(YHOO, t − 3)2∧ − E [eR(YHOO, t − 3)2] denotes a moving average
term.

Model (9.8.2) implies that volatility during period t is affected positively
affected by volatility lags in period t − 1 and t − 3. The positive effect of
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eR(YHOO, t − 3)2 on eR(YHOO, t)2 is counterbalanced by the negative
effect of �R(YHOO, t − 3), the shock associated with eR(YHOO, t − 3)2.
Since there are no significant interactions between AR and MA terms in
(9.8.2), GARCH coefficients appear to be non-time varying for the time
period under study.

In general, if the equation for dC (t) is ill specified, the GARCH vari-
ance forecast [as in (9.8.2)] is also likely to be biased or ineffective [since
eR(t)2∧ is based on the model for the mean]. As such, price volatility should
also be evaluated in terms of forecasts for two related variables in z(t) that
quantify volatility: The first is the range R(T ) = H (t) − L(t) and the sec-
ond is the candlestick body, B(t) = O(t) − C (t). Forecasts of dC (t) and
the GARCH-type process associated with dC (t), R(t), and B(t) should be
evaluated for consistencies in interpretation.

It is of interest to note that as of November 2009, none of the high-tech
issues discussed in this section had recovered to achieve their dotcom bubble
peaks—with one exception. Amazon.com reached an all-time high follow-
ing announcement of their third-quarter 2009 earnings; see Figures 9.8.7
and 9.8.8. No company symbolized the dotcom boom better than Amazon,
the first public retailer to go public. By the time it peaked in December 1999,
it had gained 6000% in the 30 months since its flotation. It did so without

Figure 9.8.7 Monthly candlestick chart for Amazon.com (AMZN) from flotation in May 1997
through October 2009. (Source: MSN Money)
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Figure 9.8.8 Comparison of AMZN price trend with those of CSCO, CTXS, MSFT, and the
NASDAQ Composite Index. (Source: MSN Money)

making a profit. The insanity of this became evident as Amazon’s stock sub-
sequently fell 94%. But incredibly, it turns out that in the long term, buying
Amazon at the top would not have worked out so badly .. . .There have been
better investments over the past decade but there have been many worse
(Authers, 10/27/09).

9.9 TWENTY-FIVE STANDARD DEVIATION MOVES

Firms are said to be liquid when they are able to meet current obligations or
short-term demand for funds. A firm is said to be solvent but illiquid when
its assets exceed its liabilities but it is unable to liquidate assets rapidly
enough to meet current obligations. Markets are said to be liquid when a
large volume of financial securities can be traded without price distortions
because there is a ready and willing supply of buyers and sellers. Liquid mar-
kets are a sign of normalcy. In August 2007, liquidity abruptly dried up for
many firms and securities markets. Suddenly some firms were able to bor-
row and investors were able to sell certain securities only at prohibitive rates
and prices, if at all. The liquidity crunch was most extreme for firms and
securities with links to subprime mortgages, but it also spread rapidly into
seemingly unrelated areas. The stock market experienced unusual volatil-
ity and investors rushed to buy the safest of all investments, U.S. Treasury
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securities. On August 31, 2000, Federal Reserve Chairman Ben Bernanke
noted that “although this episode appears to have been triggered largely by
heightened concerns about subprime mortgages, global financial losses have
far exceeded even the most pessimistic projections of credit losses on those
loans.” The spread of disruptions from housing into other debt markets is an
example of financial contagion, or systemic risk. Contagion spread among
non-bank institutions: mortgage lenders, hedge funds, and issuers of various
types of securities, including commercial paper, asset-backed securities, struc-
tured products, and debt supporting leveraged buyouts and takeovers. As fear
of risk has increased, these institutions saw sources of credit vanish and strug-
gled to meet existing financing commitments, to post additional collateral, and
to cope with portfolio losses. Some financial institutions, primarily mortgage
lenders and hedge funds, have been unable to resolve liquidity problems and
have closed. (opencrs.com/document/RL34182)

David Viniar, the chief financial officer of Goldman Sachs, and a man widely
regarded as having done more than most to guard his institution against the
credit crunch, complained of “25-standard deviation moves, several days in a
row” back in August 2007. Such events are so impossibly unlikely that writing
down the probability that they would occur would fill the rest of this paragraph
with zeros. The implication should have been clear instantly: the mathematical
model on which so many trillions of dollars depended was simply wrong. The
financial sector will never see a real “25-standard deviation move,” but it will
see plenty of modeling errors. (Financial Times editorial, 12/23/08, Fixing
cracks in the crystal ball)

Regarding a 25-standard move for dC (t), recall that the standard devia-
tion (σ) is equal, approximately, to the range (R) divided by six: R ≈ 6σ.
If σ = 25, then R ≈ 150. With reference to the daily candlestick chart
for Dow Jones in Figure 9.9.1, a 25-standard move for dC (t)—assuming
normality for dC (t)—means that in a period of one trading day, the clos-
ing price increased or decreased by $150. During the August 2007 period
in question, price changes of $150 were more or less common. Inspec-
tion of Figure 9.9.1, as well as other candlestick charts presented thus far,
indicates that dC (t) may be distributed according to nonnormal, fat-tailed
distributions.

Given that price changes [the dC (t)] are periodically volatile and follow
nonnormal-type distributions, commentaries such as “the mathematical
model (i.e., the assumption of a normal distribution for price changes)
on which so many trillions of dollars depended were simply wrong”
apparently appeals to doomsayers and those who are illiterate in statistical
modeling.

A basic overview of statistical modeling and its assumptions would seem
to be in order. In modeling dC (t), the objective is to explain, as much as
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Figure 9.9.1 Daily candlestick chart for Dow Jones ($INDU): 7/30/07 to 9/4/07.

possible, variations in dC (t) in terms of explanatory variables—whatever
the distribution of dC (t). The model expresses dC (t) as a function of
such variables. This function also includes a contemporaneous model error
component denoting that portion of dC (t) which is not explained by the
explanatory variables.

The critical distributional assumption in modeling is in regards to the
model error, such as εRh(t) in model (9.5.7)—not the distribution of
dC (t). Whatever the distribution of dC (t), the model error tends to be
symmetrically distributed—with either homogeneous or heterogeneous
variance—when the model effectively explains a reasonable portion of the
variation in dC (t). GARCH-type modeling is a means of forecasting the
variability associated with heterogeneous error variance. Consequently,
if it is thought that the mathematical model is simply wrong , such
commentary should be directed at the model’s explanatory variables, not
at the distribution of dC (t).

The daily candlestick chart for Goldman Sachs (GS) in Figure 9.9.2
covers the same time period as that for $INDU in Figure 9.9.1. GS and
$INDU are seen to move in tandem during the 25-standard deviation moves
of August 2007. From a chartist perspective, the bearish indicators for GS
in the second and third trading days prior to 7/23/07 (see box 1) were
reinforced by the bearish indicator for INDU the day prior to 7/23/07; see
box 1.
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Figure 9.9.2 Daily candlestick chart for Goldman Sachs (GS): 7/30/07 to 9/4/07. (Source:
MSN Money)

Both charts display bullish engulfing indicators on 8/6/07; see box 2 for
GS. However, the bullish trend is unexpectedly short-lived. During the week
of 8/6/07, a number of high-profile quant funds reported unprecedented
losses. The speed and price impact of these initial losses put pressure on a
broader set of quant fund portfolios, resulting in a substantial downturn on
8/9/07; see box 3 for GS. The downturn continued until the selling climax
on 8/16/07, at which time bullish patterns appear in both Figures 9.9.1 (box
2) and 9.9.2 box 4). The question at hand is whether adaptive drift modeling
could have enhanced chartist forecasts.

Results of factor analysis for GS are presented in Tables 9.9.1 and 9.9.2.
The second factor (with an associated eigenroot of less than 1) is included
to allow the factors to account for at least 90% of the total variation.
Factor scores defined by both factors can be shown to define stationary
processes.

The first model update for dC (GS,t) is based on daily data from 2/7/07
through the bearish engulfing pattern on 7/19/07, two trading days prior to
7/23/07; see box 1. Model forecasts support the chartist bearish forecasts.
However, the model predicted a continued downward price movement for
bullish engulfing pattern on 8/6/07, which mandated a model update then
if not before.

Compared to the model update through 7/19/07, the model update
through 8/6/07 results in changes in most of the explanatory variables and
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TABLE 9.9.1 Principal Components Analysis Applied to the Goldman Sachs Correlation
Matrix

Extraction Sums of Rotation Sums of
Initial Eigenvalues Squared Loadings Squared Loadings

Comp- Percent of Cumul- Percent of Cumul- Percent of Cumul-
onent Total Variance ative % Total Variance ative % Total Variance ative %

1 6.948 86.850 86.850 6.948 86.850 86.850 4.742 59.281 59.281
2 0.694 8.677 95.527 0.694 8.677 95.527 2.900 36.246 95.527
3 0.202 2.519 98.046
4 0.117 1.457 99.504
5 0.023 0.292 99.796
6 0.012 0.144 99.939
7 0.003 0.040 99.979
8 0.002 0.021 100.000

TABLE 9.9.2 Rotation of the First Two Factors in Table 9.9.1a

Component

1 2

O 0.992 0.043
H 0.993 0.081
L 0.994 −0.050
C 0.989 0.001
Lg1cb5 0.977 0.144
Lg1cb20 0.884 0.384
lnv 0.105 0.907
lnvb5 0.020 0.925

aRotation method: Varimax with Kaiser normalization.

is given as follows:

dC (GS, t)∧ = −1.855.75 + 4.375.56[QD{R(t − 1)}][CB{R(t − 1)}]
+ 10.846.45[u2(t − 1)][QD{B(t − 1)}]
+ 3.335.55[QD{LW (t − 1)}][run{B(t − 1)}]
+ 0.603.96[QD{L(t − 1)}][QD{B(t − 1)}]
− 33.603.53[CB{v(t − 1)][LIN {B(t − 1)}]
− 1.462.75[QD{LW (t − 1)}][u2(t − 1)]. (9.9.1)

Beginning with 8/7/07, model (9.9.1) correctly forecast all price movements
up to, but not including, the next bullish engulfing pattern that occurred two
trading days prior to 8/20/07; see box 4. For the white body in box 4, the
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model forecast is for a continued downward price movement—at which
time the model is again updated if not before.

Regarding interpretations of interactions in model (9.9.1), the positive
effect of [QD{R(t − 1)}][CB{R(t − 1)}] indicates that this effect is nega-
tive if the quadratic and cubic trends in the price ranges do not reinforce
one another. The variable u2(t − 1)—the lagged shock associated with
volumes—appears in two interactions, the first with [QD{B(t − 1)}] and
the second with [QD{LW (t − 1)}]. The first u2(t − 1) interaction has a
positive (negative) effect when the volume is sufficiently large to support
a quadratic upswing (downswing) in bullish (bearish) body sizes. The sec-
ond u2(t − 1) interaction has a negative effect when a sufficiently large
volume accompanies an upswing in the trend of the lower wicks of the
candlesticks.

The interaction [QD{LW (t − 1)}][run{B(t − 1)}] has a negative effect
when a larger run in bullish bodies is accompanied by an upswing in lower
wick trends. The effect of the interaction [CB{v(t − 1)][LIN {B(t − 1)}]
is negative when the linear trend in bullish bodies is accompanied by a
downswing in the volumes.

Based on the model update for dC (GS, t) in (9.9.1), the result of volatility
modeling based on a GARCH process is as follows:

eC (GS, t)2∧ = 12.682.21 + 0.542.69eC (t − 1)2−0.432.18eC (t − 2)2

+ 0.394.11eC (t − 3)2

+ 0.482.23�C (t − 1)∧ − 0.442.16�C (t − 2)∧. (9.9.2)

Model notation follows that given for model (9.6.2). Variance heterogeneity
in (9.9.2) is seen to be affected by the first three autoregressive terms and the
first two moving average terms. Since there is no evidence of interactions
between autoregressive and moving average terms, the implication is that
the GARCH process is not time varying, at least for the time period under
study.

9.10 THE MARCH 2009 NADIR

Optimists declared early March 2009 as the nadir for 2008–2009 financial
market convulsions, while pessimists tended to view the “V” recovery as
the first stage of a “W” recovery. Others, particularly active traders, were
content to view that period as a near-term buying opportunity. Figure 9.10.1
presents the relative price changes for the daily NASDAQ Index (COMPX)
from 2/2/09 to 5/14/09 and superimposes comparable changes in two other
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Figure 9.10.1 Comparison of three major indices during the March 2009 nadir. (Source: MSN
Money)

major indexes, the Dow Jones Industrial Index and the Standard and Poor
500 Index. All the indexes clearly display pronounced minima on 3/9/09
and bullish patterns the following day.

Figure 9.10.1 also serves to illustrate discrepancies in recovery rates
between the NASDAQ Composite Index (COMPX), the Dow Jones Indus-
trial Index, and the S&P Index following the low point. Some day the tech
sector will be cyclical and silicon chips will obey the same economic rules
as forklift trucks, rising and falling with the economy. But that moment has
not yet arrived, and markets still rely on the tech sector not just as a vehicle
for growth but as a defensive redoubt. Since hitting a bottom in November
2008, US tech stocks have outperformed the S&P 500 by 32.8% and beaten
cyclical stocks by 32.8% (Authers, 7/16/09).

However, while COMPX has consistently outperformed other popular
indexes following the low point, Figure 9.10.2 shows that financial issues
such as Goldman Sachs and Bank of America vastly outperformed COMPX.

Goldman, long the most prestigious bank on the Street and now plainly the
biggest winner to emerge from the crisis, put aside $11.4bn to cover compensa-
tion for the first six months of the year. If current trends stay on course, Gold-
man will pay out an average of $770,000 to each of its 29,000 employees. . . .
Joblessness is still rising across the western world. Losses on US credit cards
hit a record 10.44% in June. Housing starts show signs of stabilizing but rising
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Figure 9.10.2 Comparison of two major indices with Bank of America and Goldman Sachs
during the March 2009 nadir. (Source: MSN Money)

unemployment should force many more mortgages into default. . . . Goldman’s
results have triggered a backlash. A Rolling Stone article that this month
described Goldman as a “vampire squid sucking the face of humanity” seems
to have struck a particular cord.4 (Authers, 7/18/09)

The daily candlestick charts for Radio Shack (RSH) in Figure 9.10.3 and
for Polaris Industries (PII) in Figure 9.10.4 show a doubling in price by
early May following the March nadir.

Figure 9.10.5 presents the weekly candlestick chart for the Chinese oil
company CNOOC Limited (CEO) from 3/10/08 to 5/11/09. For weekly
candlestick charts, the two closing price moving averages are based on
the prior 25-day moving average (denoted cb25 ) and the prior 100-day
moving average (denoted cb100 ). A selling climax occurred during the
week of 10/20/08 with 6.3 million shares traded. The following week, a
bullish engulfing pattern (see box 1) defined the absolute minimum five
months before the March 2009 nadir ; see box 1. From 10/20/08 to early
May 2009, share prices doubled in value. Note that the weekly chart in
Figure 9.10.5 is in accord with the daily charts in Figures 9.10.3 and 9.10.4
in that all three charts display bullish patterns during the 2009 nadir.

The March 2009 nadir may be compared to the August 1982 nadir.
Figure 9.10.6 compares the NASDAQ Composite and S&P 500 Indexes

4During the second quarter of 2009, Goldman Sachs made more than $100m in trading
revenue on a record 46 separate days (or 71% of the time). This broke the previous high of
34 days during the first quarter of 2009. Its very counterintuitive to think that they’d be able
to generate this much profit and this much revenue in the middle of an ongoing recession,
said William Cohan, author of House of Cards about the collapse of Bear Stearns Co. But
the fact that so many of their competitors are out of business or severely wounded has put
them in a very strong position (Harper, 8/5/09).)
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Figure 9.10.3 The March 2009 nadir: daily candlestick chart for Radio Shack (RSH). (Source:
MSN Money)

Figure 9.10.4 The March 2009 nadir: daily candlestick chart for Polaris Industries (PII).
(Source: MSN Money)
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Figure 9.10.5 Weekly candlestick charts for the Chinese oil company CNOOC (CEO). (Source:
MSN Money)

1

2

3

Figure 9.10.6 Market nadir of August 1982: weekly candlestick chart for the NASDAQ index
with comparisons to other indices.
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in terms of weekly candlesticks from June 1981 through January 1983.
The 1982 nadir ended a 15-year bear market. At the time, Paul Volker,
then chairman of the Federal Reserve Board, was attacking inflation, while
Ronald Reagan and Margaret Thatcher were applying highly unpopular
economic policies. French President Mitterrand observed that Thatcher
combined the eyes of Caligula with the lips of Marilyn Monroe. Thatcher’s
commentary on her friend Ronald Reagan: Poor dear, there’s nothing
between his ears .

Figure 9.10.6 displays a roller coaster ride to ride down to the market
nadir the week of 8/16/82 in box 3. The nadir is in terms of a well-defined
bullish morning star pattern; see pattern 5 in Table 5.1. The nadir is then
followed by a remarkable run of white bodies. The two major relative
minima for COMPX nadir—the first occurring just prior to 10/5/81 (box
1) and the second (box 2) in early March 1982—are both defined in terms
of bullish engulfing patterns. Note also that the two relative maxima that
occur between the three minima are defined in terms of bearish candlestick
patterns.

For purposes of smoothing the daily candlestick trends in Figure 9.10.1,
Figure 9.10.7 presents the weekly candlestick chart for the NASDAQ Com-
posite Index from 6/30/08 to 7/13/09. Both figures show that the March
nadir is associated with bullish indicators—a morning star in the daily chart
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Figure 9.10.7 Weekly candlestick chart for COMPX from 6/30/08 to 7/13/09. (Source: MSN
Money)
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and an engulfing configuration in the weekly chart (see box 2). Relative to
daily model forecasts, weekly model forecasts with updates tend to provide
more reliable forecasts because of the smoothing effect. A trade-off between
modeling smoothed (say, weekly changes) versus less-smoothed (say, daily
or intraday changes) time series is that the former tends to provide less
profitable rules with less risk, whereas the latter tends to provide more
profitable rules with greater risk.

For the weekly candlesticks presented in Figure 9.10.7, model forecasts
are now compared with chartist forecasts. Following the bearish candlestick
pattern the week of 8/18/08—which is reinforced by bearish bodies in
the two weeks that followed (see box 1)—model forecasts are bearish
through the week of 11/24/08 (the first white body in box 2). The model
prediction that accompanied the bullish piercing pattern on 10/27/08 (box
2) proved to be a false indicator for a market upturn. A model update
at that point gave a forecast for a continued downward trend through the
next white body. Model forecasts for the plateau period that followed are
hit and miss. A bullish morning star pattern defines the March nadir in
box 3.

Equation (9.10.1) presents the updated forecasting model based on
weekly data through the second dark body in box 3:

dC (COMPX, t)∧ = 0.227.45[QD{L(t − 1)}][CB{R(t − 1)}]
− 72.433.79[CB{v(t − 1)}][CB{R(t − 1)}]
− 0.215.14[QD{H (t − 1)}][QD{cb25(t − 1)

− cb100(t − 1}]
− 24.952.75[LIN {LW (t − 1)}][CB{B(t − 1)}].

(9.10.1)

At this point in time, model forecasts again become reliable, which
includes correctly forecasting bullish engulfing pattern (the March nadir)
in box 3. Moreover, model forecasts confirm the bullish chartist forecasts
through the last white body in box 3.

However, for the week that follows those in box 3, the model incorrectly
forecasts a downturn. In contrast, the chartist forecast has the downturn
occurring two weeks later in terms of the bearish evening star pattern. Both
forecasts are in error since a downturn did not materialize. Rather, a plateau
period followed around the 1800 price range. When there are inferential
disagreements between chartist and model forecasts and/or during plateau
periods, recourses are frequent model updates and, in this case, a change
from weekly forecasts to daily or intraday forecasts.
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Notice that contrary to other modeling exercises, lagged factor scores
do not appear in (9.10.1). The reason is that the between and within dis-
equilibria are reflected largely by the disparity variables comprising the
interactions—as was conjectured earlier. This type of modeling outcome
is more likely to occur when analyses are in terms of smoothed weekly or
monthly candlestick data as opposed to daily or intraday candlestick data.

In (9.10.1) the variable QD{cb25(t − 1) − cb100(t − 1)} in the third
interaction denotes the quadratic trend in the difference between the 25-
day moving average (cb25 ) and the 100-day moving average (cb100 )
from times t − 4 through t − 1. For decreasing prices, QD{cb25(t − 1) −
cb100(t − 1)} < 0, combined with an upward trend in the highs, leads to a
positive effect for the third interaction.

The first two interactions involve CB{R(t − 1)}, the cubic trend in the
range from times t − 4 through t − 1. The positive effect of price increases,
measured in terms of CB{R(t − 1)} > 0 and QD{L(t − 1)} > 0, is offset by
the negative effect of price volatility. The latter is characterized by excessive
price and volume movements, as measured in terms of CB{v(t − 1)} > 0
and CB{R(t − 1)} > 0.

To further illustrate the smoothing effect of weekly candlestick charts
(relative to daily charts), Figure 9.10.8 presents weekly price changes in
BIDU (see Section 8.4) compared with its competitor Google (GOOG)

Figure 9.10.8 Weekly candlestick chart for Baidu (BIDU), including comparisons with Google
and the NASDAQ Composite Index. (Source: MSN Money)
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Figure 9.10.9 Monthly candlestick chart for the Aluminum Corporation of China (ACH).
(Source: MSN Money)

and the NASDAQ Composite Index (COMPX). During the year under
study, BIDU share prices dropped by approximately 70% (far more than
the decline for GOOG and COMPX) before returning to their values in
July 2008.

There are situations where smoothing in terms of monthly candlesticks
may be useful in more conservative active trading. Figure 9.10.9 presents a
monthly candlestick chart for the Aluminum Corporation of China. During
the February 2005 to October 2009 period, all relative minima (boxes 2 and
4) and maxima (boxes 1 and 3) are identified correctly in terms of bullish
and bearish patterns.

In general, the active trader’s task is one of scanning a large number of
equities on a continuing basis, identifying optimal trading opportunities and
weighing the risks. This is a formidable task. James H. Simons, president
of Renaissance Technologies, mathematician, and quant investor, is said to
be the most successful hedge fund manager ever. Renaissance reportedly
spent $600 million on computers and other technology that enable Simons
and his army of Ph.D.’s to gather mountains of data on every conceivable
securities and futures contract and search for patterns that will tell them what
is likely to happen and when (White, 4/28/07). With trading based on insider
information on one hand and the market activities of hedge funds such as
Renaissance Technologies on the other, the playing field is never level.





10
Modeling Cointegrated
Time Series Associated

with NBA and NFL Games

10.1 MODELING TRANSITIONS

The transition in modeling simultaneous time series is from financial to
sports gambling markets. Financial variables defining z(t) in (9.4.1) are
replaced by the following variables pertaining to game outcomes in the
sports gambling markets (SGMs):

zSGM(t)=(D(i , t),GSD(i , t), T (i , t),GST (i , t),WL(i , t), STR(i , t), D(i ∗, t∗),

GSD(i ∗, t∗), T (i ∗, t∗), GST (i ∗, t∗), WL(i ∗, t∗), STR(i ∗, t∗))′.

(10.1.1)

Elements of zSGM(t) are defined as follows:

D(i , t) = score differential between team i and its
opponent, team i ∗, in what is game t
for team i and game t∗

for team i ∗; D(i , t) = −D(i ∗, t∗)
GSD(i , t) = D(i , t) − LD(i , t) = gambling shock corresponding to the

line on the difference, LD(i , t);
GSD(i , t) = −GSD(i ∗, t∗)

Forecasting in Financial and Sports Gambling Markets: Adaptive Drift Modeling, By William S. Mallios
Copyright  2011 John Wiley & Sons, Inc.
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T (i , t) = total points scored by team i and its
opponent; T (i , t) = T (i ∗, t∗)

GST (i , t) = T (i , t) − LT (i , t) = gambling shock corresponding to the
line on the total; GST (i , t) = GST (i ∗, t∗)

WL(i , t) and WL(i ∗, t∗) = percentage of games won by team
i (team i ∗) in their previous N games;
N = 10 for the NBA games and
N = 5 for NFL games

STR(i , t) and STR(i ∗, t∗) = number of consecutive games won or
lost by team i (team i ∗) prior to game
t(game t∗)

In contrast to the assumptions leading to model (9.5.1) for dz(t), we
begin with the assumption that zSGM(t) can be modeled in terms of the
following adaptive process:

zSGM(t) = dz(t) = �j>0Aj (t)zSGM(t − j) + �k≥0Bk (t)w(t − k) + ε(t).

(10.1.2)

Aj (t) and Bk (t) denote, respectively, time-varying coefficient matrices of
zSGM(t − j) and the covariate vector w(t − k); ε(t) denotes the model error.

The vector w(t − k) includes (but is not limited to) the lines LD(i , t −
k), LT (i , t − k), LD(i ∗, t∗ − k), and LT (i ∗, t∗ − k) in addition to the fol-
lowing variables:

H /A(i , t − k) and H /A(i ∗, t∗ − k) = H /A = 1 for a home game and
H /A = 0 for an away game

D(i , t − pi∗) and T (i , t − pi∗) = score differential and the total
points scored during the previous
encounter between the two teams

GSD(i , t − pi∗) and GST (i , t − pi∗) = gambling shocks associated with
the previous encounter between
the two teams

Applications will demonstrate that the time series comprising the 12 × 1
vector zSGM(t − k) are cointegrated. As such, an initial task is to esti-
mate m∗ < 12 nonredundant linear combinations of zSGM(t − k). Given
cointegration, the model component Aj (t)zSGM(t − j) in (10.1.2) may be
written
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Aj (t)zSGM(t − j) = Cj (t)Dj (t)zSGM(t − j) =Cj (t)uSGM(t − j),

(10.1.3)

Dj (t)zSGM(t − j) = uSGM(t − j). (10.1.4)

Cj (t) is of order 12 × m∗, while Dj (t) is of order m∗ × 12. The vector
uSGM(t − j) is directly analogous to the vector u(t − 1) in (9.3.5) in that
it represents the confounded effects of both within- and between-relation
shocks corresponding to time t − j .

Substituting the expression for Aj (t)zSGM(t − j) in (10.1.13) into
(10.1.2), we have

zSGM(t) = �j>0Cj (t)uSGM(t − j)+�k≥0Bk (t)w(t − k) + ε(t).

(10.1.5)
The hth of m = 12 equations in (10.1.5) is written

zSGMh(t) = �j>0chj(t)′uSGM(t − j)+�k≥0bhk(t)′w(t − k)+εh(t).

(10.1.6)
The hth rows of Cj and Bk in (10.1.5) are written chj(t)′ and bhk(t)′,
respectively, and εh(t) denotes the hth element of ε(t).

Analogous to the adaptive drift modeling procedure presented for finan-
cial modeling, coefficient drift in (10.1.6) is assumed to be generated in
terms of lagged shocks, which include the uSGM(t − j) [written lexico-
graphically in terms of the vector uSGM(t − )], GSD(t−1) and its earlier
lags [written as GSD(t−)], and GST (t−1) and its earlier lags [written
GST(t − )]. It should be noted that elements of u(t−) may largely reflect
those of GSD(t − ) and GST(t − ) and that the use of factor analysis scores
in estimating uSGM(t − j) confounds the effects of uSGM(t − ), GSD(t − ),
and GST(t − ).

Models for the vectors chj(t) and bhk(t) are in terms of the following
first-order linear regression equations:

chj(t) = chj + FLR(u∗
SGM(t−), GSD∗(t−), GST∗(t−); θchj) + δhj(t),

(10.1.7)

bhk(t) = bhk + FLR(u∗
SGM(t−), GSD∗(t−), GST∗(t−); θbhk) + δhk(t).

(10.1.8)
FLR is an acronym for first-order linear regression equation in elements
of u∗

SGM(t − ), GSD∗(t − ), and GST∗(t−); regression coefficients are rep-
resented by θchj and θbhk. As in financial modeling, assumptions imposed
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on the model errors δcj(t) and δbk(t) will allow for GARCH-type volatility
modeling.

For gradual drift,

u∗
SGM(t−) = uSGM(t−);

GSD∗(t−) = GSD(t−);
GST∗(t−) = GST(t−). (10.1.9)

For abrupt drift where elements of uSGM(t−) and/or GSD(t−) and/or
GST(t−) are sufficiently large in modulus, any or all of the following
expressions may hold:

u∗
SGM(t−) = uSGM(t−)+Huvu(t−);

GSD∗(t−) = GSD(t−)+HGSD vGSD(t−),

GST∗(t−) = GST(t−)+HGST vGST(t−). (10.1.10)

Coefficients denoted by elements of the matrices Hu , HGSD , and HGST rep-
resent respective effects of vu(t−), vGSD(t−), and vGST(t−), vectors of
variables, insignificant in the previous model update, whose direct effects
become significant in abrupt drift scenarios.

Substitution of (10.1.17)–(10.1.18) into (10.1.16) results in a second-
order reduced regression equation for zSGMh(t), which is written simply

zSGMh(t) = fh [xh(t);ψh] + εRh(t). (10.1.11)

xh(t) includes first- and second-order terms involving u∗
SGM(t−), GSD∗(t−),

GST∗(t−), w(t−), vu(t−), vGSD(t−), and vGST(t−);ψh is the correspond-
ing parameter vector; εRh(t) is the reduced model error, which is subject
to volatility modeling. Following estimation of uSGM(t−), first-stage model
identification or estimation in (10.1.11) follows directly from the stepwise
regression as applied in financial modeling in Section 7.3. Based on the
squared residuals that correspond to the model errors in (10.1.11), one may
then proceed with GARCH-type volatility modeling.

In terms of forecasting outcomes of a game between team i and team
i ∗, the primary modeling focus is on D(i , t), D(i ∗, t), T (i , t), and T(i ∗, t).
Forecasts for D(i , t), and D(i ∗, t) should, at the very least, not be contra-
dictory in terms of the line; for example, in the 2008 Super Bowl, where the
Patriots were 12-point favorites over the Giants, a Giant model forecast of
a Giant win by 4 points and a Patriot model forecast of a Patriot win by 1
point are not contradictory in terms of the line; both forecasts indicate that
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the Giants + 12 is the appropriate bet. Similarly, forecasts for T (i , t) and
T (i ∗, t) should both be on one side of the line (on the total points scored)
or the other.

Forecasts for GSD(i , t), GSD(i ∗, t), GST (i , t), and GST (i ∗, t) are also
highly relevant, for two reasons. First, they provide a check on the validity
on forecasts for D(i , t), D(i ∗, t), T (i , t), and T (i ∗, t); for example, if the
forecasts for D(i , t) indicates that team i will beat the line, the forecast
for GSD(i , t) should be greater than zero and roughly equal to the dif-
ference between the D(i , t) forecast and LD(i , t). Second, the gambling
shock forecasts provide alternatives to conventional volatility modeling.
Conventionally, volatility modeling associated with, say, D(i , t) is based
on GARCH-type modeling of the squared residuals associated with the fitted
D(i , t). If the model for D(i , t) is ineffective or biased, the accompanying
GARCH model will reflect this bias. Modeling the gambling shock directly
is a possible means of avoiding such biases.

In the forthcoming modeling illustrations, the uSGM(t − j) in (10.1.16)
are estimated in terms of factor analysis—as was the case in forecasting
price changes in the financial forecasting exercises.

10.2 THE 2007–2008 NEW YORK GIANTS: AS UNEXPECTED
AS KATRINA

Reduced model (10.1.11) is applied in forecasting the four New York
Giants play-off games in 2007–2008 (the last four NYG games in Figure
1.2.3). The variables under study are D(i = NYG, t) and T (i = NYG, t),
as defined in (10.1.1).

Modeling begins with the estimation of the uSGM(t − j) in (10.1.15),
defined as the lags of confounded between- and within-relation shocks. As
in the financial modeling exercises, factor analysis is applied. The estimated
correlation matrix of zSGM(t) in (10.1.1) is based on five successive years
of NYG regular-season and play-off games through the end of the regular
2007–2008 season.

Eigenvectors are extracted from the 12 × 12 correlation matrix through
principal components analysis; see Table 10.2.1. The six vectors associated
with eigenroots >0.8 are seen to account for 94.4% of the total variation.
These six vectors are then rotated through the varimax procedure to allow
for ease in interpretation. The resulting linear combinations are given by
the six factors in Table 10.2.2. The 12 row headings in Table 10.2.2 are
defined by the variables in (1.1.1). With a slight change in notation, OPP
denotes the NY Giant opponent. The factor scores corresponding to each
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TABLE 10.2.2 Rotation of the First Six Factors in Table 10.2.1a

Factor

Variable u1 u2 u3 u4 u5 u6

D(NYG, t−1) 0.924 −0.030 0.042 0.019 0.004 0.332
GSD(NYG, t−1) 0.974 0.030 0.012 0.031 −0.024 0.122
T(NYG, t−1) 0.016 0.986 0.033 0.072 0.061 −0.014
GST(NYG, t−1) −0.025 0.985 0.009 0.003 0.076 −0.078
WL5(NYG, t−1) 0.151 −0.019 0.122 0.001 −0.023 0.944
STR(NYG, t−1) 0.480 −0.109 0.116 −0.011 −0.026 0.789
D(OPP, t∗−1) −0.004 0.005 0.022 0.921 0.300 0.001
GSD(OPP, t∗−1) 0.046 0.069 0.063 0.968 0.112 −0.004
T(OPP, t∗−1) 0.029 0.025 0.980 0.028 0.019 0.140
GST(OPP, t∗−1) 0.033 0.018 0.986 0.054 −0.042 0.064
WL5(OPP, t−1) −0.055 0.076 −0.036 0.099 0.940 0.025
STR(OPP, t−1) 0.037 0.066 0.015 0.327 0.858 −0.075

aRotation method: Varimax with Kaiser rotation.

TABLE 10.2.3 New York Giants Model Update Forecasts Versus One-Step-Ahead
Forecasts

D(NYG vs. OPP)∧

NYG Opponent TB DAL GB NE LD(NYG, t) D(NYG, t)

At TB 14.6 3.0 10
At DAL 6.7 6.0 −7.0 4
At GB −6.6 −7.2 −7.4 −7.5 3
NE 5.4 4.8 4.6 4.8 −12.0 3

of the six factors can be shown to define stationary processes and are thus
used to estimate the uSGM(t − j).

Table 10.2.3 presents two types of forecasts for NYG play-off games.
The type 1 forecast is defined as one-step-ahead forecasting with no further
model updates; that is, the model update based on all NYG games played
through the end of the 2007–2008 regular season is then used to forecast
each successive play-off game with no further model updates. The second
type of forecast is defined as one-step-ahead forecasting with a model update
following each successive game; that is, following each play-off game the
model is updated to allow for changes in coefficients and/or predictors. The
type 2 forecast is indicative of the adaptive model drift that accommodates
structural changes in team performances on a per game basis.

In Table 10.2.3, the diagonal elements of the 4 × 4 matrix (comprising
the second through the fifth columns) are type 2 forecasts, while lower, off-
diagonal elements are type 1 forecasts. Relative to the line on the difference
[denoted by LD(NYG, t)] and the actual outcome [D(NYG, t)], all forecasts
are correct. Through the Green Bay game, models for the type 1 and type 2
forecasting models are very nearly the same. The type 1 forecasting model
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is given by

D(NYG, t)∧ = 5.47 − 0.0925.73[GST ∗(t−1, NYG)][GST (t−1, OPP)]

− 6.5583.79[u2(t−1)][u5(t−1)], (10.2.1)
where

GST ∗(t−1, NYG) = GST (t−1, NYG) for GST (t−1, NYG)<0,

= 0 for GST (t−1, NYG) ≥ 0.

(10.2.2)

The first interaction is defined by two within-series GST shocks and the sec-
ond by two between- or within-series shocks; u2(t−1) and u5(t−1) denote,
respectively, the factor scores corresponding to second and fifth factors
(columns) in Table 10.2.2. The factor score for u2(t−1) refers to shocks
relating to T and GST for NYG in their previous game. The factor score for
u5(t−1) refers to shocks relating to their opponent’s won–lost percentage
and streak. In three of the four NYG play-off games, u2(t−1) and u5(t−1)

were of opposite sign, whereas for the Patriot game, u2(t−1) was near zero.
The NYG chart in Figure 1.2.3 provides insights into effects of these

interactions. As underdogs in their last three games, NYG won over oppo-
nents who had defeated them in their previous encounter during the regular
season. Dallas had beaten NYG twice during the regular season, which
made it unlikely that they would do so a third time in the second round of
the play-offs.

The GB game went into overtime and the weather was frigid.1 The
forecast had NYG losing by 7.4 points, while the official line was virtually
the same at 7.5 points; see Figure 10.2.1 for a candlestick chart displaying
all GB regular and postseason games. The closeness of the forecast and
the line may be indicative of a no-bet situation, which was reinforced by
the likelihood of ominous GB weather conditions. An obvious weakness of
the forecasting models is that they do not directly reflect effects of weather
conditions on game outcomes—unless the bookmaker adjusts the final line
to partially reflect anticipated weather condition.

In evaluating model 10.2.1 for effects of MA and bilinear terms, there
is evidence of a marginally significant MA(t−2) effect (illustrating the

1In the overtime period, Green Bay quarterback Brett Favre threw a devastating interception
that led to the GB loss against the NYG in the second round of the play-offs. Two years later,
Minnesota lost to New Orleans in overtime in the second round of the play-offs. Minnesota
quarterback Brett Favre threw the final devastating interception.
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Green Bay Packers: 2007–2008 season, ending with play-off win
against Seattle and second-round loss to New York Giants 
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Figure 10.2.1 Green Bay Packers candlestick chart for the 2007–2008 season.

nonredundancy of gambling and statistical shocks):

NYG_D(t)∧ ∼= 5.83 + 0.0997.27[GST ∗(t−1, NYG)][GST (t−1, OPP)]

−7.9764.24[u2(t−1)][u5(t−1)] − 0.3341.77eR(t−2).

(10.2.3)

However, the forecast inferences are the same for equations (10.2.1) and
(10.2.2).

The NYG model update just prior to the NE game changed model (10.2.1)
slightly, but not the forecast inferences. This model update resulted in

NYG_D(t , OPP = NE)∧ = 4.56 + 0.0806.27[GST ∗(NYG, t−1)]

× [GST (OPP, t−1)] − 5.5123.52[u2(t−1)]

× [u5(t−1)] + 0.4092.42[LD(NYG, t)]

× [STREAK (OPP, t−1)]. (10.2.4)

Table 10.2.3 forecasts were confirmed by developing comparable models
for each NYG play-off opponent. Such confirmations are critical since each
team tends to be unique, so that forecasting models usually differ between
teams. In general, ineffective forecasting results from universal modeling
(where per team databases are pooled in developing a single model to
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Dallas Cowboys: 2007–2008 season, ending with play-off loss to New York Giants
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Figure 10.2.2 Dallas Cowboys candlestick chart for the 2007–2008 season.

forecast outcomes for all NFL games). When forecasting models for each
of two opposing teams yield contradictory predictions relative to the line
relative to the line, confirmatory analyses are necessary.

Such contradictory forecasts are illustrated in the Dallas–NYG play-off
game. In the latter part of the season Dallas played poorly, in that they failed
to beat the line in the four games preceding the NYG game and also lost
two of those games; see Figure 10.2.2 for a candlestick chart depicting all
regular and postseason Dallas games for the 2007–2008. Against Dallas,
the NYG model for T (NYG, t) forecast a point total less than the line
of 47.5 points, while the corresponding model for Dallas forecast a point
total of more than 47.5 points. Confirmatory analyses included modeling
GST (NYG, t) and GST (DALLAS, t)—models that directly forecast the
gambling shocks corresponding to the total points scored. However, since
confirmatory analyses did not resolve the issue, the game was a no-bet
situation regarding total points scored.

Forecasts are also suspect when, for an individual team, the forecast based
on the model update through the last game differs, in inference, from the
forecast based on the previous model update. Such a contradiction occurred
in forecasting the total points scored in the NYG vs. GB play-off game, an
overtime game that was played under extreme weather conditions. The NYG
model update through the Dallas game forecast a point total greater than the
line while the model update through the two previous games forecast point
totals less than the line. This uncertainty, plus the uncertainty of playing in
Green Bay in mid-January, made this a no-bet situation.
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Aside from the modeling uncertainties associated with the NYG total
point forecasts for the Dallas and GB games, forecasts for the other play-
off games against Tampa Bay and NE were correct relative to the line. For
the NYG–NE finale, model updates through the end of the regular season,
and each play-off game gave total point forecasts that ranged from 34 to
46 points. The line on the total was 53.5 points; 31 points were scored in
the game. The NYG model update on total points scored through the GB
game is given as follows:

T (NYG, t)∧ = 41.0230.1 + 0.067.53[GST ∗∗(NYG, t−1)][D(OPP, t−1)]

− 7.944.97[u5(t−2)][u1(t−3)] − 0.055.27[GST (OPP, t−1)]

× [GSD(OPP, t−2)] − 0.023.59[GST (OPP, t−1)]

× [GST (OPP, t−2)], (10.2.5)

where, similar to (10.2.2),

GST ∗∗(NYG, t−1) = GST (NYG, t−1) for GST (NYG, t−1)> 0,

= 0 for GST (NYG, t−1) ≤ 0. (10.2.6)

10.3 MISERY FOR THE PATRIOT FAITHFUL

Modeling procedures in Section 10.2 are now applied in forecasting the New
England Patriots 2008 play-off games (the last three games in Figure 1.2.2)
Results are used to corroborate the NYG forecasts for the finale.

The factor analysis used to estimate cointegrated relations in NYG mod-
eling is reapplied to comparable data for NE. Relative to the results of the
principal components analysis for NYG data in Table 10.2.1 (where 94.7%
of the variation is explained by the six eigenvectors associated with the six
largest eigenroots), the comparable analysis of NE data in Table 10.3.1 show
that the first six eigenvectors account for 92.7% of the variation. Rotated
eigenvectors for NE data are presented in Table 10.3.2. It is seen that six NE
factors are comparable to NYG factors presented in Table 10.2.2. The only
difference are in the ordering of factors; for example, for the NYG analysis,
the first factor estimates the relation between D(NYG, t) and GSD(NYG, t),
while for the NE analysis, the fourth factor estimates the relation between
D(NE, t) and GSD(NE, t).
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TABLE 10.3.2 Rotation of the First Six Factors in Table 10.3.1a

Component

Variable 1 2 3 4 5 6

NE−LG1DIFF −0.010 0.022 0.049 0.928 0.039 0.290
NE−LG1SHDIFF −0.069 0.039 0.024 0.973 0.029 0.089
NE−LG1TOT 0.007 0.980 0.005 0.010 0.028 0.058
NE−LG1SHTOT −0.002 0.977 −0.004 0.052 0.042 0.067
NE−WL5 0.024 0.046 0.009 0.090 0.160 0.885
NE−STREAK −0.132 0.082 0.024 0.270 −0.023 0.817
LG1DIFF 0.018 0.019 0.907 0.022 0.346 0.013
LG1SHDIFF 0.075 −0.018 0.964 0.048 0.143 0.017
LG1TOT 0.983 0.001 0.058 −0.048 0.016 −0.076
LG1SHTOT 0.985 0.004 0.031 −0.033 −0.033 −0.021
WL5 −0.043 0.022 0.152 0.009 0.956 0.050
STREAK 0.030 0.060 0.351 0.065 0.874 0.115

aRotation method: Varimax with Kaiser normalization.

The model for D(NE, t), updated through the last game of the regular
season, is given in (10.3.1). The model and resulting forecasts remained
largely the same with updates following the first two play-off games.

D(NE, t)∧ = 3.34 + 0.573.22LD(NE, t)

+ 0.123.64[D(NE, t−1)][STR_SHD(NE, t−1)]

+ 4.613.83[u4(t−2)][u2(t−3)]−3.933.07[u4(t−2)][u4(t−3)].

(10.3.1)
The coefficient of LD(NE, t), the line on the difference for NE, and the
effectiveness of the model forecasts indicate that the market was inefficient
for the Patriot play-off games. Instead of having a coefficient of LD(NE, t )
close to 1, the analysis produces a coefficient of 0.57. The gambling public
clearly misjudged forthcoming NE performances for the play-offs if not at
for the entire latter part of the season.

The first interaction is the cross product between D(NE, t − 1) (which
was positive for all games but the finale) and STR_SHD(NE, t − 1), the
streak or successive number of positive or negative gambling shocks on the
difference going into game t . For each of the three play-off games as well
as the three end-of-regular-season games, GSD(NE, t) < 0. The effect of
the first interaction is dominant in reducing the value of D(NE, t)∧.

Regarding effects of the factors in Table 10.3.1, the negative effect of the
interaction [u4(t−2)][u2(t−3)] involves the cross product between factor
scores associated, respectively, with the second lag of the fourth factor and
the third lag of the second factor. Similarly, u4(t−2) also interacts with
u4(t−3). For the play-off games, the effects of these shock interactions
contributed slightly to D(NE, t)∧.
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TABLE 10.3.3 New England Patriots Model Update Forecasts Versus One-Step-Ahead
Forecasts

D(NE vs. OPP)∧

NE Opponent JAC SD NYG LD(NE, t) D(NE, t)

JAC 9.8 13.5 11
SD 10.1 10.0 14.0 9
NYG 0.8 0.9 0.8 12.0 −3

Table 10.3.3 presents model update forecasts in the same format given for
NYG forecasts in Table 10.2.3. Relative to the line, forecasts were correct
for all three play-off games. Note that the NE forecasts had the Patriots
winning the game against the Giants by about 1 point (well below the line),
whereas the NYG forecast had the Giants winning by 4 to 5 points.

For the play-offs, the forecasting model for the total points scored by
NE and its opponent, T (NE, t)∧, was incorrect relative to the line for
the Jacksonville game but correct for the games against the Chargers and
the Giants. Generally, for the 2008 NFL play-off games, TOT forecasts
relative to Line(TOT) were less accurate than DIFF forecasts relative to
Line(DIFF).

A partial explanation is that TOT values are more volatile than DIFF
values. An alternative approach to modeling volatility is to analyze cat-
egorized rather than actual values of TOT through alternative procedures
such as Bayesian discriminant analysis, Fisher’s linear discriminant func-
tion, and logistic regression. These procedures are discussed in Chapter 11,
which also includes the application of the discriminant analysis that led to
the categorized predictions for the NY Giants in Table 1.1.1.

10.4 THE PITTSBURGH STEELERS IN SUPER BOWL 2005

Figure 10.4.1 presents a candlestick chart of regular-season and play-off
games for the Pittsburgh Steelers (PIT) during the regular 2005–2006
season and play-off games that concluded with the Super Bowl win
over Seattle. PIT began the season by winning seven of its first nine
games, but then suffered a major setback when both quarterback Ben
Roethlisberger and his backup, Charlie Batch, went down with injuries.
With the third-team quarterback as the starter, PIT was upset by Baltimore
16–13. Roethlisberger then returned at which point PIT lost in successive
weeks to then undefeated Indianapolis and division rival Cincinnati. PIT
then recovered and won the remaining four regular season games to claim
the sixth and final seed in the AFC play-offs on the road to winning the
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Pittsburgh Steelers: 2005–2006 season and four play-off games, 
ending with Super Bowl win over Seattle
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Figure 10.4.1 Pittsburgh Steelers candlestick chart for the 2005–2006 season.

2008 Super Bowl. Figure 10.4.1 shows that PIT outperformed the line on
the difference in eight of their last nine games. Note also that except for
game 10 (when Roethlisberger and his backup were out of the lineup) and
game 11 against Indianapolis, a PIT dark body is always followed by a PIT
white body.

Tables 10.4.1 and 10.4.2 present results of factor analysis applied to PIT
data. These results are roughly the same as those obtained for NYG and
NE in Tables 10.2.1 and 10.2.2 and Tables 10.3.1 and 10.3.2, respectively.
As in previous analyses for NE and NYG, factor scores corresponding to
each of the six factors in Table 10.4.2 define stationary processes and are
used to estimate between- and within-relation shocks.

The model update for D(PIT, t) through the next-to-last regular season
game is given in (10.4.1). (Contrary to most other play-off teams, the last
game of the regular season was vital to Pittsburgh’s hopes of making the
play-offs.) With updates after the last regular-season game and throughout
the play-offs, the PIT model remained stable. Note that variables relating
to total points scored, both by PIT and its opponent in their previous game,
dominate the interactions in (10.4.1).

Based on the pre-play-off model update, Table 10.4.3 presents model
forecasts against Detroit in the last regular-season games and the four play-
off games. Relative to the line, all forecasts are correct.
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TABLE 10.4.2 Rotation of the First Six Factors in Table 10.3.1a

Component

u1 u2 u3 u4 u5 u6

D(PIT, t−1) −0.058 −0.189 0.923 −0.080 0.059 0.234

SHD(PIT, t−1) −0.140 −0.175 0.940 −0.023 0.050 0.144

T(PIT, t−1) 0.974 −0.111 −0.110 0.032 0.055 0.025

SHT(PIT, t−1) 0.976 −0.103 −0.072 0.013 0.033 0.088

WL5(PIT, t−1) 0.163 0.012 0.144 −0.066 0.062 0.910

STR(PIT, t−1) −0.048 −0.179 0.208 −0.077 −0.064 0.891

D(OPP, t−1) 0.018 0.103 −0.044 0.880 0.421 −0.090

SHD(OPP, t−1) 0.029 0.097 −0.063 0.970 0.149 −0.073

T(OPP, t−1) −0.128 0.946 −0.211 0.108 0.051 −0.075

SHT(OPP, t−1) −0.100 0.965 −0.145 0.079 0.009 −0.087

WL5(OPP, t−1) 0.055 −0.008 0.083 0.139 0.937 0.036

STR(OPP, t−1) 0.033 0.062 0.020 0.338 0.870 −0.031

aRotation method: Varimax with Kaiser normalization.

TABLE 10.4.3 Pittsburgh Steeler Game Outcomes [Diff(PIT, t)] and Model Forecasts
[Diff(PIT, t)∧] Relative to the Line [LineDiff(PIT, t)] for the Last Five Games of the
2005–2006 Season

Date PIT Opp. Score LineDiff(PIT, t)) Diff(PIT, t) Diff(PIT, t)∧

1/1/06 DET W35–21 +15.5a 14 5.3
1/8/06 at CIN W31–17 +3.0 14 8.8

1/15/06 at IND W21–18 −8.5 3 0.9
1/22/06 at DEN W34–17 −3.5 17 6.5
2/5/06 SEAb W21–10 +4.0 11 9.7

aPIT favored by 15.5 points.
bSuper Bowl 2006.

D(PIT, t)∧ = 0.214.94[T (PIT, t−1)][STR_GST (PIT, t−1)]

− 0.174.98[u2(t−1)][TOT (OPP, t−2)]

+ 0.043.70[D_W (OPP, t−1)][SHTOT (OPP, t−1)]

+ 0.292.77[SHT (tp)][u3(t−1)]

+ 0.044.16[TOT (tp)[WL5(OPP, t−1)]

+ 3.062.70[u2(t−2)][u4(t−3)]. (10.4.1)
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Regarding the first interaction, the variable STR_GST (PIT, t−1) represents
the streak or number of consecutive games through game t−1 that Pitts-
burgh’s gambling shock on total points scored is greater or less than zero.
For the play-offs, GST for PIT alternated between positive and negative
values. Regarding the third interaction,

D_W (OPP, t−1) = D(OPP, t−1) if D(OPP, t−1)> 0,

= 0 if D(OPP, t−1)<0.

The third interaction reflects a motivational factor for PIT in that it has a
positive effect on D(PIT, t) when the PIT opponent had won their previous
game and had exceeded the line on total points scored. Similarly, the posi-
tive effect of the interaction [u2(t−2)][u4(t−3)] has a positive effect when
the two lagged shocks reflect positive performance by the PIT opponent in
their previous game.

10.5 MIAMI’S FIRST NBA TITLE: 2005–2006

In 2006, the Miami Heat won their first NBA title by defeating the Dallas
Mavericks 4–2 in the finals. The Heat’s Dwayne Wade was named finals’
MVP. This finals matchup featured two teams that never made the finals
in the past. The last time this happened was in 1971, when the Milwau-
kee Bucks met the Baltimore Bullets. The first time this happened was in
1947, when the Chicago Staggs lost to the Philadelphia Warriors. This also
happened between the Minneapolis Lakers and the Washington Capitals in
1949 and between the New York Knickerbockers and the Rochester Royals
in 1951.

In the Western Conference semifinals, the Mavericks almost gave up a
3–1 series lead to the defending champion San Antonio Spurs but managed
to pull out a game 7 overtime win in San Antonio to close out the series.
This was just the second time in NBA history that the road team won
a game 7 in overtime. The Los Angeles Lakers defeated the Sacramento
Kings in the same manner in the 2002 Western Conference finals.

A year earlier, in August 2005, Shaquille O’Neal had signed a five-year
extension with the Heat for $100 million. Supporters applauded O’Neal’s
willingness to take what amounted to a pay cut, and the Heat’s decision
to secure O’Neal’s services for the long term. Critics, however, questioned
the wisdom of the move, characterizing it as overpaying an aging and often
injured player.

In the second game of the 2005–2006 regular season, O’Neal injured his
right ankle and subsequently missed the following 18 games. Many critics
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MIAMI HEAT: 2005–2006 NBA CHAMPIONS
The last 41 games of the 2005–2006 season, including play-off games v1.

CHI(W6), NJ(W5), DET(W6), and DAL(W6)
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Figure 10.5.1 Candlestick chart for the Miami Heat for the last 41 games of the 2005–2006
season, including play-off games versus Chicago (won in six games; see box 1), New Jersey
(won in five; see box 2), Detroit (won in six; see box 3), and Dallas (won the NBA championship
in six; see box 4).

stated that Miami coach Pat Riley correctly managed O’Neal during the
rest of the season, limiting his minutes to a career low. Riley felt that doing
so would allow O’Neal to be healthier and fresher come play-off time.
Although O’Neal averaged career (or near-career) lows in points, rebounds,
and blocks, his view on personal statistics changes: Stats don’t matter. I care
about winning, not stats. If I score 0 points and we win, I’m happy. If I score
50, 60 points, break the records, and we lose, I’m pissed off, ’cause I knew I
did something wrong. I’ll have a hell of a season if I win the championship
and average 20 points a game. During the 2005–2006 regular season, the
Heat recorded only a 0.500 record without O’Neal in the lineup (Wikipedia,
2009).

Figure 10.5.1 presents a candlestick chart for Miami for the last 41
games of the season. The dismal Heat performances in the last part of
the regular season prior to the play-offs are reflected by the losses and
underperformances—the dark bodies—relative to the line. These perfor-
mances are not indicative of a play-off team, let alone a championship
team.
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TABLE 10.5.2 Rotation of the First Six Factors in Table 10.5.1a

Component
u1 u2 u3 u4 u5 u6

D(MIA, t−1) 0.957 −0.011 −0.099 −0.008 0.058 0.179
SHD(MIA, t−1) 0.964 −0.020 −0.106 0.055 −0.091 0.066
T(MIA, t−1) 0.021 0.044 −0.036 −0.015 0.865 0.192
SHT(MIA, t−1) −0.038 −0.005 0.048 0.072 0.873 −0.140
WL10(MIA, t−1) 0.016 −0.154 −0.096 −0.047 −0.082 0.913
STR(MIA, t−1) 0.410 0.069 0.032 −0.142 0.199 0.754
D(OPP, t−1) −0.134 0.006 0.883 0.374 0.007 −0.082
SHD(OPP, t−1) −0.094 0.076 0.959 0.113 0.006 −0.020
T(OPP, t−1) −0.034 0.974 0.054 −0.024 0.002 −0.025
SHT(OPP, t−1) 0.012 0.969 0.027 0.014 0.038 −0.080
WL10(OPP, t−1 0.003 −0.041 0.106 0.916 0.041 −0.175
STR(OPP, t−1) 0.049 0.041 0.419 0.827 0.023 0.039

aRotation method: Varimax with Kaiser normalization.

Tables 10.5.1 and 10.5.2 present results of factor analysis based on 2.5
years of Miami per game data through the end of the regular 2005–2006
regular season. Note that these results are similar to those for the NFL
modeling exercises given in earlier sections of this chapter. Each of the six
factors in Table 10.5.2 can be shown to define stationary processes. As such,
the corresponding factors scores are used to quantify the confounded effects
of between- and within-relation shocks in the Miami modeling exercises.

Model (10.5.1) presents modeling results for D(MIA, t). The model was
updated through the end of the Detroit play-off series and used in forecasting
the six games in the final series against Dallas.

D(MIA, t)∧ = 18.763.82 + 1.383.07LD(MIA, t)

− 0.235.09[D_W (MIA, t−1)][STR(MIA, t−1)]

− 0.113.76[D_W (MIA, t−1)][STR_W (OPP, t−1)]

− 0.0013.13[T (OPP, t−2)][T (OPP, t−3)]

+ 1.833.53[u5(MIA, t−1)][STR_SHD(MIA, t−2)]

+ 3.773.47[u3(MIA, t−2)][u1(MIA, t−3)]. (10.5.1)

The variable

D_W (MIA, t−1) = D(MIA, t−1) if MIA won their previous game,

= 0 if MIA lost their previous game.

The negative effect of [D_W (MIA, t−1)][STR(MIA, t−1)] on D(MIA, t)
becomes more pronounced the greater their winning streak. Similarly, the
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TABLE 10.5.3 Model (10.5.1) Forecasts for the 2007 NBA Championship Series Between
Miami (MIA) and Dallas (DAL)

MIA vs. DAL LD(MIA, t) D(MIA, t) D(MIA, t)∧ Forecast Relative to LD(MIA, t)

At DAL- −4.5a −10 −8.6 Correct
At DAL −4.5 −14 −10.4 Correct
At MIA 4.5 2 14.4 Incorrect
At MIA 3.5 24 8.3 Correct
At MIA 2.0 1 7.4 Incorrect
At DAL- 5.0 3 0.7 Correct

aDAL was favored by 4.5 points.

negative effect of the interaction [D_W (MIA, t−1)] [STRw/l(OPP, t−1)]
on D(MIA, t) increases D(MIA, t)∧ if MIA has won their previous game
and are meeting an opponent in the midst of a win streak. Conversely,
this effect becomes positive if their forthcoming opponent is in the
midst of a losing streak. Effects of lagged shocks are in terms of the
variables u5(MIA, t−1), u3(MIA, t−2), and u1(MIA, t−3). The interaction
[u5(MIA, t−1)][STR_SHD(MIA, t−2)] has an increasingly positive effect
on D(MIA, t)∧ when MIA in a streak of above-average performance (in
terms of the line on the difference), particularly in their previous game.

Forecasts based on (10.5.3) are presented in Table 10.5.3. Relative to the
game outcomes, all forecasts are correct. However, relative to the line on
the difference, four of the six forecasts are correct. A winning margin of
66% is often the norm for these forecasting procedures.

10.6 THE 2006–2007 SAN ANTONIO SPURS: UNEXPECTED
TITLISTS

In 2007, the Golden State Warriors qualified for the NBA play-offs for the
first time since 1994, the second-longest such streak in league history. In the
first round, the Warriors were heavy underdogs and won against the Dallas
Mavericks with one of the best records in NBA regular season history. This
was after Dallas lost to Miami in the finals a year earlier.

There were expectations of a short series despite the fact that the War-
riors, coached by former Dallas coach Don Nelson, had swept the regular
season games between the two teams. In addition, the Mavericks failed to
play up to the gambling public’s expectations during the last weeks of the
regular season. Figure 10.6.1 shows that for the 14 games prior to the first-
round play-off loss to Golden State, Dallas failed to beat the line on the
difference in nine of the games.

Substandard Dallas performances continued with Golden State’s game
1 victory in Dallas, behind guard Baron Davis and his frantic style of
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Dallas Mavericks: Last 20 games of the 2006–2007 season, with 
first-round play-off loss to Golden State
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White Candlestick Body: GSD > 0, Dark Candlestick Body: GSD < 0,
Candlestick Wick: GST > 0 above body and GST < 0 below body

Figure 10.6.1 Candlestick chart for the 2006–2007 Dallas Mavericks concluding with a
first-round play-off loss to Golden State in six games (see the box).

play. The Mavericks came back to win game 2, to tie the series. However,
when the series shifted to Oakland for the next two games, a new X-
factor emerged for the Warriors: their home crowd at the Oracle Arena. The
Oakland partisans, the highest-paid-attendance crowd for an NBA game in
the history of that arena, gave the Warriors a huge lift as they blew out
Dallas in game 3, and edged out a close victory in game 4.

As the series shifted back to Dallas, the top-ranked Mavericks found
themselves one game from seeing their record-breaking season end prema-
turely. The Mavericks gave their all and were able to stave off elimination
in game 5, but had nothing left in game 6 in Oakland. The Warriors used a
third-quarter 18–0 run, sparked by Stephen Jackson’s 13 straight points en
route to a franchise play-off record seven three-pointers and an unexpected
collapse from MVP candidate Dirk Nowitzki (2–13 from the field with 8
points), to finish Dallas. Golden State became the first No. 8 seed to win a
best-of-seven series in the first round, in one of the biggest upsets in NBA
play-off history.

The Warriors had won their first play-off series since 1991. Ironically,
both 2006 NBA finalists (Dallas and Miami) were eliminated in the first
round in the 2007 play-offs. The Dallas loss to the Warriors was as unex-
pected as their loss to Miami in the 2005–2006 finals.

The San Antonio Spurs were to become the unexpected titlists in
2006–2007. Figure 10.6.2 presents the San Antonio candlestick chart for
their last 41 games of 2006–2007. The final 20 are play-off games against
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San Antonio Spurs: Last 41 games of the 2006–2007 season, with
play-off series against Denver (won in 5 games),

Phoenix (won in 6 games), Utah (won in 5 games), and
Cleveland (won NBA title in 4 games)
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Figure 10.6.2 Candlestick chart for the 2006–2007 San Antonio Spurs, concluding with play-
off games versus Denver (won in five games; see box 1), Phoenix (won in six; see box 2), Utah
(won in five; see box 3), and Dallas (won the NBA championship in four; see box 4).

Denver (won in five; see box 1). Phoenix (won in seven; see box 2),
Utah (won in five; see box 3), and the finals against Cleveland (won in
four; see box 4). Throughout the play-offs, the Spurs were disciplined and
well coached. A dark body play-off loss was always followed by a win
or a white body. The Spurs games against their four play-off opponents
provided contrasting profiles of team behavior.

With the Dallas loss to Golden State, the stakes of the Phoenix–San
Antonio series shot up dramatically. The result was one of the most hotly
contested and controversial series in NBA history. The Suns, with a better
season record, had home court advantage. Phoenix was led by two-time
MVP Steve Nash and the Spurs by three-time finals’ MVP Tim Duncan.
The Suns quickly lost their home court advantage as the Spurs took a
closely contested game 1, a game that saw Nash missing the final minutes
due to a bloody gash to his nose. Following game 2, which the Suns won
by 20 points, the Suns’ star forward Amare Stoudemire accused the Spurs
of being a dirty team.

Despite the added scrutiny by the media circles, the Spurs took game 3 in
San Antonio with Tim Donaghy, the shamed referee who was later found to
fix games, at the helm; see Section 10.7. With the line favoring the Spurs by
3 points, the Suns staged a come-from-behind victory in game 4, to tie the
series at 2. However, in the closing minute of game 4 with the Suns leading
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by 3 points, Nash was shoved into the press table by Robert Horry. This
created an altercation that prompted Stoudemire and a teammate to leave the
Suns’ bench. Although not involved in the altercation, Stoudemire broke
an established NBA rule that prohibits players from leaving their bench
during altercations. As a result, the NBA suspended Stoudemire for one
game, while Horry received a two-game suspension for the flagrant foul,
and ejection.

The Suns came into game 5 in San Antonio with the task of beating the
Spurs without their star big man. The suspensions created a national outrage
as well as a front-court breach for San Antonio to exploit during game 5. The
line correctly pegged the Spurs as 3-point favorites, and they won 88–85.
Although Stoudemire returned for the Suns for game 6 in San Antonio,
the Spurs eliminated them 114–106, to advance to the Western Conference
finals against the Utah Jazz. Several NBA pundits opined that the Suns
would probably have won the series if the controversial suspensions had
not been given to Stoudemire.

For the first time since 1990, neither the No. 1 nor No. 2 seed participated
in the Western Conference finals. The series pitted youth against experience
as the up-and-coming Utah Jazz faced the seasoned San Antonio Spurs.
Coming into the series, the Jazz were not given much of a chance due to
their inexperience. Although Carlos Boozer, Deron Williams, and the Jazz
were able to hold their own against San Antonio for part of the series, their
efforts were not enough.

The first two games of the series, resulting in San Antonio home victories,
saw the Spurs blow big first-half leads and the Jazz mount last-gasp rallies
that failed. The Jazz, who had been undefeated at home in the postseason,
gave their best effort in a 109–83 game 3 rout of the Spurs. However, Jazz
fans’ euphoria over the team’s only series victory gave way to frustration
in game 4. The ejections of Utah head coach Jerry Sloan and Jazz guard
Derek Fisher energized the Utah home crowd to rain debris onto the court in
protest. Game 5 was anticlimatic as the Spurs won 109–84 to advance to the
NBA finals against Cleveland. The Spurs then eliminated the overmatched
Cavaliers in four games (Wikepedia, 2009).

Tables 10.6.1 and 10.6.2 present results of factor analysis based on 2.5
years of San Antonio game data through the end of the regular 2006–2007
regular season. The six factors for SAN in Table 10.6.2 are somewhat
unusual compared with six factors for Miami in Table 10.5.2 and to factor
analyses for other NBA games. For example, instead of relations between
D and GSD and between T and GST as in Table 10.6.2, the factor
analysis results for the Spurs shows, instead, linear relations between
D and T , and between GSD and GST . For SAN, the relation between D and
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TABLE 10.6.2 Rotation of the First Six Factors in Table 10.6.1a

Component

u1 u2 u3 u4 u5 u6

D(SAN, t−1) −0.027 0.973 0.047 −0.048 −0.016 0.057
SHD(SAN, t−1) −0.030 0.057 0.955 0.118 −0.002 0.085
T(SAN, t−1) −0.034 0.959 0.066 −0.048 −0.036 0.148
SHT(SAN, t−1) −0.023 0.046 0.961 0.061 0.038 −0.084
WL10(SAN, t−1) −0.087 0.034 0.007 0.014 −0.022 0.934
STR(SAN, t−1) −0.022 0.516 −0.015 −0.014 −0.116 0.675
D(OPP, t−1) 0.956 −0.022 −0.037 −0.094 −0.029 −0.068
SHD(OPP, t−1) −0.114 −0.064 0.108 0.933 −0.031 0.050
T(OPP, t−1) 0.938 −0.049 −0.025 −0.054 0.234 −0.040
SHT(OPP, t−1) −0.020 −0.028 0.068 0.949 0.030 −0.042
WL10(OPP, t−1) 0.056 −0.065 0.028 −0.004 0.944 −0.064
STR(OPP, t−1) 0.584 0.000 0.012 0.010 0.676 −0.042

aRotation method: Varimax with Kaiser normalization.

T evaluates whether the game as a whole is in or out of balance (as opposed
to evaluating whether D is out of balance with respect to GSD), whereas
the second relation evaluates whether the two gambling shocks are out of
balance. Each of the six factors in Table 10.6.2 can be shown to define
stationary processes. As such, the corresponding factors scores are used to
quantify the confounded effects of between- and within-relation shocks in
the San Antonio modeling exercises.

Except for the Utah series, numerous model updates were required for
effectively forecasting D(SAN, t). The implication is that the Spurs were
a team that adjusted their playing style to the particular game situation
at hand—to a greater extent relative to the 2006–2007 Miami Heat.
For the first series against Denver, the model update through the end
of the regular season provided correct forecasts, relative to the line, for
the first two games. Due to conflicting forecasts between one-step-ahead
forecasts based on an earlier model update and a model update through
the last game played, updates were required for the remaining three games
of the series—in which case all forecasts were correct relative to the
line.

The Phoenix series was a more difficult modeling proposition. The fore-
cast for the first game in Phoenix was correct in picking the winning Spurs
relative to the line. However, the forecast also had the underdog Spurs
winning the second game—a game that the Spurs lost by 20 points. The
latter forecast was counterintuitive, in that it was highly unlikely that the
Spurs could win the second game in Phoenix after winning the first away
game. While the updated third game forecast was correct, the forecast for
the fourth game in San Antonio had the favored Spurs beating the line.
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Instead, they lost by 6 points. In all, model forecasts were correct (rela-
tive to the line) in three of five games—with D(SAN, t) = LD(SAN, t) in
game 5.

In the finale against Cleveland, the updated model correctly forecast the
San Antonio wins relative to the line in the first two games. However, the
forecast for game 3 had the favored Cavaliers beating the line. The Cavaliers
lost. The forecast for the final game had the favored Spurs beating the line
(3 points), but they won by only 1 point.

Equation 10.6.1, the model update for D(SAN, t) based on data through
the Denver series, gave correct forecasts relative to the line for all six games
in the Utah series and did not change with model updates that followed each
game of the Utah series. The D(SAN, t) forecasts for the Utah series are
based on the following equation:

D(SAN, t)∧ = −3.221.82 + 0.0086.87[T (SAN, t−1)][LD(SAN, t)]

+ 1.136.02[D_L(SAN, t−1)][H _A(SA, t)]

+ 0.0194.68[SHT (OPP, t−1)][T (SA, tp)]

− 0.0184.46[D(SAN, t−1)][SHT (OPP, t−2)]

− 1.863.68[u3(SAN, t−1)][STR_SHD(SAN, t−2)].

(10.6.1)

Forecasts based on 10.6.1 are presented in Table 10.6.3. The Spurs were
favored in all games except for the third game of the series. All forecasts
were correct for this series [relative to the line on D(SAN, t)] as denoted
by LD(SAN, t).

As an adjustment to the line on the difference, the first interaction,
[T (SAN, t−1)][LD(SAN, t)], indicates that the line should be increased
or decreased in proportion to the SAN point total in their previous game.

TABLE 10.6.3 Model (10.6.1) Forecasts for the 2007 NBA Western Conference
Championship Series Between San Antonio (SAN) and Utah (UTH)

SAN vs. UTH LD(SAN, t) D(SAN, t) D(SAN, t)∧ Forecast Relative to LD(SAN, t)

At SAN 7.5a 8 9.0 Correct

At SAN 6.5 9 19.4 Correct
At UTH −1.0 −26 −7.6 Correct
At UTH 2.0 12 23.7 Correct
At SAN 7.0 25 12.2 Correct

aSAN was favored by 7.5 points.
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For example, a low point total for the Spurs in their previous game may
possibly indicate a strenuous defensive game, which may have a physi-
cal effect on the players in their next game. For the second interaction,
[D_L(SAN, t−1)][H _A(SA, t)], the variable

[D_L(SAN, t−1)] = D(SAN, t−1) when D(SAN, t−1) < 0,

= 0 when D(SAN, t−1) < 0.

This interaction has a positive effect when the Spurs are playing at home
in game t and lost their previous game. (From Figure 10.6.2 it is seen that
a SAN loss was always followed by a SAN win.)

The negative effect of the final interaction [u3(SAN, t−1)]
[STR_SHD(SAN, t−2)] deals with streaks and changes in steaks. The
first variable u3(SAN, t−1) measures disequilibria between the gambling
shock associated with the difference scores and the gambling shock
associated with the total points scored in the Spurs’ previous game.
If, for example, the Spurs had a string of games where they beat the
line on the difference through game t−2([STR_SHD(SAN, t−2)] > 0)

and then showed a negative disequilibrium between the two gambling
shocks in game t−1, the indication is that Spurs momentum had changed,
which in this situation would have a negative effect in their forthcoming
game.

10.7 MONITORING NBA REFEREE PERFORMANCES

Modeling assumptions for MLB, NBA, and NFL game outcomes are
premised on the assumption of a level playing field (i.e., outcomes are
not subject to fixes). The case of Tim Donaghy may suggest otherwise.
Recall that Donaghy was the NBA referee who made calls affecting the
point spreads on games after betting on those games; see Section 1.2.
Such revelations make it imperative that procedures be established and/or
improved for monitoring individual referee performances in the manner of
quality control, as used in engineering and manufacturing to ensure that
product or services are designed and produced to meet or exceed customer
requirements and demands.

To illustrate the process of monitoring behavior in simplest terms, we
present an analogous example of detecting deviant performance in law
enforcement. In the case of United States v. Barajas (Cr.S-93-495-WBS),
a California Highway Patrol officer (Officer Smith) ticketed Barajas
on Interstate Highway 5. Smith was subsequently charged with racial
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TABLE 10.7.1 Number of Tickets Issued by Officer Smith (S) and Other Officers (OF) to
Hispanic (H) and Non-Hispanic (NH) Driversa

H NH Row Total

S 104 106 210
OF 154 810 964

Column total 258 916 1174

aSummary statistics:

• Percent of tickets issued by Smith: 17.9%.

• Expected percentage of all tickets issued by Smith under the assumption
that all six officers issued the same number of tickets: 16.7%.

• Percent Hispanic among those ticketed by Smith: 49.5%.

• Percent Hispanic among those ticketed by the five other officers: 16.0%.

profiling by ticketing drivers with surnames identified as definite or
probable Hispanic (H). Table 10.7.1 presents data on the numbers of H
drivers and non-Hispanic (NH) drivers ticketed by Officer Smith (S) and
the five other officers (OF) who most frequently worked the same beat
during the January–March period of 1994. The table includes summary
statistics.

Let PH(S) and PH(OF) denote, respectively, the proportions of H among
those ticketed by S and OF over the period in question. The standard-
ized normal test statistic that tests the hypothesis that PH(S) = PH(OF)

versus the alternative that PH(S)> PH(OF) indicates the probability that
PH(S) = PH(OF) is true is less than one time in a trillion. Given the evi-
dence of racial profiling by Officer Smith, the case against Barajas was
dismissed.

There are analogies between monitoring and detecting the aberrant behav-
iors of Officer Smith and Referee Donaghy. R. J. Bell, president of the sports
betting site Pregame.com, was interviewed by ESPN sports commentator
Wayne Drehs following disclosure of the Donaghy indictment. In the two
seasons in which the FBI was investigating Donaghy for allegedly fixing
games, Bell found that NBA teams scored more points than the Las Vegas
total line on total points scored in 57% of games when Donaghy was part
of the officiating crew. With a league average of 49 to 51%, Bell concluded
that the odds of such an occurrence are 19 to 1. When Bell analyzed the
numbers from the two seasons prior to the two in question, he found that
Donaghy-officiated games beat the line on total points just 44% of time.
Bell concluded that the odds of an increase from 44% to 55% are about 1
in 1000.

ESPN.com’s own research into Donaghy’s last two seasons supported
Bell’s claims. In the 66 games Donaghy refereed in the 2005–06 season, the
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two teams in his games combined to score an average of 196.8 points. The
average over/under, according to BoDog.com, was 186.6, a difference of
almost 10 points. In 2006–07, Donaghy refereed 73 games. In those contests,
the two teams combined to score 201.37 points and the average over/under
was 187.9 points, a difference of more than 13 points per game. In response
to the ESPN.com research, Bell added: Vegas is too good for that to happen.
The standard range should be somewhere around five or six, maybe. Not 10
or 13 .

Bell’s research on Donaghy’s officiating went further. At the start of the
2007 calendar year, there were 10 straight games in which Donaghy was
part of the officiating crew and the point spread moved a point and a half or
more before tip-off, indicating big money had been wagered on the game. In
those 10 contests, according to Bell, the big money won all 10 times. “They
say follow the money, right?” Bell said. “Well, when the money is right 10
straight times, something is going on. To me, that’s the gavel clicking down.”
. . . Just as interesting are the numbers from April 15 to the postseason.
During that stretch, there were eight games in which Donaghy was part of
the officiating crew and the line moved more than a point and a half before
the tip, Bell said. And in those games, including over/under bets and win/loss
wagers, the big money was just 2–7. “It means one of two things,” Bell said.
“Perhaps in the playoffs, they felt too much scrutiny and they weren’t trying
to do anything and the results are just random. Or perhaps there was some
sort of turnabout with the individual in question and he went the other way”
(Drehs, 4/24/07).

Based on the statistical findings in the Donaghy case,2 it would appear
that additional monitoring techniques are appropriate—techniques in
terms of candlestick graphics and alternative probability assessments.
Figure 10.7.1 presents a candlestick chart for 40 consecutive NBA games
in which a hypothetical referee, referee X, was part of the officiating crew.

2Donaghy wrote a book about corruption in NBA officiating while serving time in a federal
prison for being the most corrupt NBA official ever . . . . While publisher Random House will
reportedly not publish Blowing the Whistle: The Culture of Fraud in the NBA because of
liability concerns , [the Web site] deadspin.com printed what it calls excerpts of the book .
. . . The NBA denies it threatened any legal action against Random House in an effort to stop
the book . . . . It’s far more likely the publisher pulled back when its senior legal team got a
look at the completed manuscript that lacks corroboration for the most serious allegations .
. . . Whether or not Donaghy’s allegations are true, most of them are believable. Not only to
anyone who has watched a game, but the league’s own rank-and-file players and coaches .
. . . Donaghy admits stars get preferential treatment, some refs have it in for some players and
coaches, and a losing home team is likely to get a favorable whistle to make it competitive. . . .

By understanding the dynamics of intra-league relationships and referee tendencies during
his 13 years with the NBA, Donaghy writes he was able to gamble successfully on the outcome
(Wetzel, 10/29/09).
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Portrait of referee X: Twenty-five consecutive games in which
referee X officiated 
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Figure 10.7.1 Hypothetical candlestick chart for consecutive officiating performances by
referee X..

It is seen that the line on total points scored (LTOT ) moved at least
1.5 points in 10 of the 26 games. Moreover, in all but one of these 10
games, the value of corresponding gambling shock (GST = TOT − LTOT )

was in agreement with the direction of the movement of LTOT ; the only
disagreement occurred in game 14. Based on these figures, the question at
hand is whether there is evidence of irregularities in referee X’s officiating
performance in terms of (1) the number of games in which the line moved
at least 1.5 points and (2) the number of times the LTOT and GST were in
agreement.

Similar to the example in Table 10.7.1, the answer depends on perfor-
mances by other established NBA referees during the same period of time.
Suppose first that we examine the likelihood that, out of 26 games involv-
ing referee X, 14 would have GST ≤ 0 and 12 with GST > 0. Typically,
the norm for established referees is quantified in terms of the binomial
distribution:

f (xa; n, pa) = [na !(n − na)!/n!]pna
a (1 − pa)n−na , (10.7.1)
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where

na = number of games out of n = 26 for which GST > 0

n − na = number for which GST ≤ 0

pa = probability that GST > 0 for any given game

For referee X, the question is whether P(na ≥ 14) is sufficiently small,
where the estimate of pa based on the average of pa for the other established
referees. If the estimated value of pa is, say, 0.50, then, for referee X,
P(na ≥ 14) ≈ 0.35 does not warrant undue suspicion.

A difficulty with the distributional assumption in (10.8.1) is that pa may
vary sufficiently between the other referees so as to invalidate the bino-
mial assumption. To address this shortcoming, we assume that pa varies
according to the beta distribution with parameters α> 0 and γ > 0:

g(pa ;α, γ) = pα−1
a (1 − pa)γ−1/β(α, γ), (10.7.2)

β(α, γ) = [�(α)�(γ)]/[�(α) + �(γ)],

E (pa) = α/(α + γ),

variance(pa) = αγ/(α + γ)2(α + γ + 1),

where �(·) denotes a gamma function. Multiplying (10.8.1) by (10.8.2)
and integrating out pa over the range [0, 1], we have the binomial-beta
probability density:

h(na; n, α, γ) = [na !(n − na)!/n!][β(na + α, n − na + γ)/β(α, γ)],

(10.7.3)

E (na) = nα/(α + γ),

variance(na) = n2αγ/(α + γ)2(α + γ + 1).

J.G. Skellam (1948) published the results in 10.7.3 in the late 1940s.
Relative to the binomial distribution, 10.7.3 will usually provide more
reliable expectations and assessments of probabilities in these types of
applications.

Next consider the assessment of referee X performance—as depicted in
Figure 10.7.1—in terms of:

n1: the number of times in the last 26 games that the line moved at least
1.5 points and the associated GST was in agreement with the line
movement
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n2: the number of time the line moved at least 1.5 points but the associ-
ated GST was not in agreement

n3 = n − n1 − n2: the number of times the line did not move more at
least 1.5 points

Similar to the binomial assumption in (10.8.1), the trinomial distribution

f (n1, n2; n3, p1, p2) = [n1!n2!(n3)!/n!] pn1
1 pn2

2 (1 − p1 − p2)
n3,

(10.7.4)

where n = n1 + n2 + n3, is typically applied in applying obtaining expecta-
tions that determine whether the probability P(n1 ≥ 9, n2 < 2) is in accord
with the average probability associated with the other referees during the
same time period.

If we assume that p1 = 0.15 and p2 = 0.5 for the other referees during
the same 26-game time span, the corresponding chi-squared goodness-of-fit
test is highly significant. The implication is that the near-zero value P(n1 ≥
9, n2 < 2; p1 = 0.15, p2 = 0.5) based on (10.7.4) should arouse suspicions
regarding the performance of referee X and his officiating crew.

Analogous to the replacement of (10.7.1) with (10.7.3) in determining
outcome expectations, it is likely that p1 and p2 for the other referee crews
are not constant from game to game, but instead, have a tendency to vary
between games. If so, p1 and p2 in (10.8.3) are likely to follow the multi-
variate beta distribution:

g(p1, p2;α1, α2, α3) = pα−1
1

1pα−1
2

2(1 − p1 − p2)
α−13/β(α1, α2, α3),

β(α1, α2, α3) = [�(α1)�(α2)�(α1)]/[�(α1) + �(α2) + �(α3)].

(10.7.5)
Multiplying (10.8.3) by (10.8.4) and performing appropriate integrations,
we have

h(n1, n2; n, α1, α2, α3) = [n1!n2!(n3)!/n!][β(n1 + α1, n2 + α2, n3 + α3)/

× β(α1, α2, α3)],

E (ni/n) = αi/(α1 + α2 + α3),

variance(ni /n) = αi (α1 + α2 + α3 − αi )(n + α1 + α2 + α3)
2/

× (1 + α1 + α2 + α3 − αi )n,

covariance(ni /n, ni∗/n) = αiαi∗(α1 + α2 + α3 + n)/(α2
1 + α2

2 + α2
3)

× (α1 + α2 + α3 + 1)n, (10.7.6)
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where i ∗ �= i = 1, 2, 3. See Mallios (1989) for applications of the
multinomial–multivariate beta distribution.

Expectations based on the compound distribution in (10.7.5) tend to be
more realistic than those based on the trinomial distribution in (10.7.4) since
they allow for acceptable between-game variations in judging NBA referee
performances.





11
Categorical Forecasting

11.1 FISHER’S DISCRIMINANT FUNCTION

Effective categorical forecasts have at least three attributes: They provide
an added means of risk assessment; they are useful in spread betting; and
they serve to confirm point forecasts, especially regarding the variables
D(i , t), GSD(i , t), T (i , t), and GST (i , t). Table 1.1.1 presents an illustration
of categorical forecasts for the Giants–Patriots matchup in the 2008 Super
Bowl, where odds and probabilities are given for each of three categories
D(NYG, t) : D(NYG, t) < −7, 7 ≤ D(NYG, t) ≤ 7, and D(NYG, t)>7.
Table 1.1.2 presents analogous forecasts for weekly changes in Microsoft
share prices. In this chapter we discusses methodologies that underlie these
examples.

Three procedures are commonly employed in categorical modeling (Afifi,
1996): (1) Bayesian discriminant analysis, (2) logistic regression, and (3)
Fisher’s discriminant function. Suppose, for example, that GSD(i , t) is
categorized into mutually exclusive and exhaustive categories. For two cat-
egories, we would logically choose

GSD(i , t)> 0 and GSD(i , t) ≤ 0. (11.1.1)

Modeling attaches probabilities to each of the two outcomes, which tells us
which side of the line to bet on and the associated risk. For three categories,

Forecasting in Financial and Sports Gambling Markets: Adaptive Drift Modeling, By William S. Mallios
Copyright  2011 John Wiley & Sons, Inc.
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we might choose

GSD(i , t) ≤ −2, −2 < GSD(i , t) < 2, and GSD(i , t) ≥ 2. (11.1.2)

A sufficiently large probability associated with the middle category in
(11.1.2) may indicate a no-bet situation in the sense that game is too close
to call relative to the line. Or, for spread bets on D(i , t) (see Section 8.3),
where LS and US denote the lower and upper limits of the spread, D(i , t)
would be categorized according to

D(i , t) < LS , LS ≤ D(i , t) ≤ US , and D(i , t)>US . (11.1.3)

A sufficiently large probability associated with one end category or the
other would indicate a favorable bet.

Fisher’s discriminant function applies to two categories, as in (11.1.1).
Let

CGSD(i , t) = 1 when GSD(i , t)> 0,

= 0 when GSD(i , t) ≤ 0. (11.1.4)

Substituting GSD(i , t) for zSGMh(t) in (10.1.20) and then replacing
GSD(i , t) with CGSD(i , t), we have

CGSD(i , t) = fh[xh(t);ψh] + εRCGSD (t). (11.1.5)

In forthcoming discussions, the subscript h in fh[xh(t);ψh] will be under-
stood to correspond to the categorized variable under discussion—in this
case CGSD(i , t).

Model identification and estimation in (11.1.5) is identical to that
for zSGMh(t) in (10.1.20) with one exception. One may choose to
impose Lagrangian constraints in the estimation procedure to assure that
−1 ≤ CGSD(i , t)∧ ≤ 1; CGSD(i , t)∧ denotes the estimate of CGSD(i , t).
Without the Lagrangian constraints, values of CGSD(i , t)∧ may, on
occasion, lie outside the interval [−1, 1].

Let

CGSD(i , t) = CGSD(i , t)∧ + eRCGSD (t), (11.1.6)

where eRCGSD(t) denotes the residual corresponding to reduced model error
εRCGSD (t). Risk may be assessed in terms of forecasts for time-varying
variability. A variance forecast, denoted by e2

RCGSD (t)∧, is available through
GARCH-type modeling.
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Without reference to the variance forecast, CGSD(i , t)∧ provides one
measure of the degree of certainty regarding the wager [i.e., the greater
(less) the departure of CGSD(i , t)∧ from 0.5, the greater (less) the certainty].
To incorporate e2

RCGSD(t)∧ in the decision-making process, we assume that
CGSD(i , t) follows the beta distribution in (10.8.2). The mean forecast
CGSD(i , t)∧ and variance forecast e2

RCGSD(t)∧ are then equated to the first
two moments of the beta distribution [as given in (10.7.2)]:

CGSD(i , t)∧ = α/(α + γ) and e2
RCGSD(t)∧ = αγ/(α + γ)2(α + γ + 1).

(11.1.7)

Methods of moment estimators are obtained by solving for α and γ. This
solution can be used either as a final estimate or as an initial estimate in
obtaining maximum likelihood estimates of α and γ. Substituting the esti-
mate (α∧, γ∧) for (α, γ) in the beta distribution and integrating g(pa;α∧, γ∧)

in (10.7.2) over the range [0, 0.5], we obtain the probability that CGSD(i , t)
exceeds 0.5:

P(GSD(i , t) ≥ 0.5;α∧, γ∧).1 (11.1.8)

Sufficiently large or small values of both CGSD(i , t)∧ and (11.1.8) would
determine which side of the line to bet on and the associated risk.

In the 2006 Super Bowl, the Steelers were 4-point favorites over Seattle
and won by 11 points; see Table 10.4.3. The model forecast for D(PIT , t)
was 9.7 points, a correct prediction relative to the line. As a confirma-
tory analysis, values of D(PIT , t) were categorized according to (11.1.4)
and modeled according to Fisher’s discriminant function. The result was
GSD(PIT, t = 2006 Super Bowl)∧ = 0.704.

GARCH modeling of the squared residuals corresponding to
GSD(PIT, t = 2006 Super Bowl) led to the forecast e2

RCGSD(PIT, t =
2006 Super Bowl)2∧ = 0.0199. As in (11.1.7), the mean and variance
forecasts are equated to the expected value and variance of the beta
distribution. Solving for α and γ, we obtain the following method of
moments estimates: α∧ = 9.5 and γ∧ = 4.0. For the 50% point of the beta
distribution, P(GSD > 0.5;α∧ = 9.5, γ∧ = 4.0) = 0.714. Since the point
and categorical forecasts reinforced one another, the game represented a
highly favorable scenario for betting on the Steelers relative to the line.

1Tables of percentage points of the beta distribution are given in the CRC Handbook of
Tables for Statistics and Probability , Second Edition, W.R. Beyer, Editor, The Chemical
Rubber Company, Cleveland, Ohio, 1974. Tables are also referenced on numerous Web
sites dealing with the beta distribution.
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11.2 BAYESIAN DISCRIMINANT ANALYSIS

Suppose that zSGMh(t) in (10.1.11) is categorized into T mutually exclusive
and exhaustive categories, with Chk denoting the k th category. The objective
of Bayesian discriminant analysis is to assign a probability to Chk based on
the observed value of xh(t) in (10.1.11). From Bayes’ theorem, we have

P(Chk ; xh(t)) = P(Chk )P(xh(t);Chk )/[�k∗P(Chk∗)P(xh(t);Chk∗)],

(11.2.1)

where k , k∗ = 1, . . . , T .P(Chk ; xh(t)) is the posterior probability that
GSD(i , t) belongs to Chk after observing xh(t). P(Chk ) is the prior
probability that GSD(i , t) belongs to Chk [or the probability that GSD(i , t)
belongs to Chk prior to observing xh(t)]. P(xh(t);Chk ) is the probability
that the observed value of xh(t) is known to have been drawn from
category Chk . The prior probabilities may be based either on subjective
judgment or on past empirical distributions (see Section 7.4). For uniform
priors, P(Chk ) = 1/T .

P(xh(t);Chk ) may represent any multivariate distribution for xh(t). In
software packages such as SPSS, P(xh(t);Chk ) is represented by a multi-
variate normal distribution: xh(t) :Normal [µhk(t),Vhk (t)]; that is,

f [xh(t);µhk(t),Vhk (t)]

= (2π)−p/2|Vhk (t)|−p/2 exp[−(xh(t)−µhk(t))′Vhk (t)
−1

×[(xh(t)−µhk(t))/2]. (11.2.2)

[Applications by Mallios (1989) utilize alternative distributional assump-
tions for xh(t).] If Vhk (t) = Vh(t) for all k , (11.2.1) becomes

P(Chk ; xh(t))

= P(Chk ) exp{λhk + λ′
hkxh(t)/[�k∗P(Chk∗) exp{λhk∗ + λ′

hk∗xh(t)}],
(11.2.3)

where

λhk = −µhk(t)′µhk(t)/2 and λ′
hk = µhk(t)′Vh(t). (11.2.4)

If Vhk (t) �= Vh(t), (11.2.1) becomes

P(Chk ; xh(t))= P(Chk )λ0hk exp{λhk + λ′
hkxh(t) + xh(t)′�hk xh(t)

�k∗P(Chk∗)λ0hk∗exp{λhk∗ +λ′
hk∗xh(t) + xh(t)′�hk∗xh(t)} ,

(11.2.5)
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where

λ0hk∗ = |Vhk (t)|−p/2 and �hk∗=[Vhk∗(t)]−1. (11.2.6)

In (11.2.2), the quantity in the exponent,

D2
hk = (xh(t)−µhk(t))′Vhk (t)

−1(xh(t)−µhk(t)), (11.2.7)

is known as the Mahalanobis D2 distance (Afifi, 1996). D2
hk is a weighted

measure of the distance between xh(t) and µhk(t), the centroid of the nor-
mal distribution of xh(t) that corresponds to category Chk . If xh(t) is closer
to µhk(t) than to µhk∗(t)—as measured in terms of D2

hk and D2
hk∗ —xh(t)

is more likely to belong to Chk than to Chk∗ . In terms of forecasting, the
observed value of xh(t) in (11.2.7) is converted into the Mahalanobis dis-
tances that determine probabilities that each category is likely to occur.

Under (11.2.5), the modeling procedure requires two initial steps, the
first being the estimation of population parameters and the second being
the selection of variables in xh(t)∗ from those in xh(t):

1. The parameters µhk(t) and Vhk (t) are usually unknown and replaced
by the per category sample estimates: say, µhk(t)∧ and Vhk (t)∧.

2. The vector xh(t) in (10.1.11) contains a large number of possible
predictor variables that have been identified through the adaptive
drift modeling procedure for the continuous variable zSGMh(t). Since
zSGMh(t) is now categorized according to the Chk , xh(t)∗ must be
selected from xh(t) in order to forecast P(Chk ; xh(t)∗).

As such, the estimation of P(Chk ; xh(t)∗) is preceded by the adaptive drift
modeling procedure for zSGMh(t) that first identifies xh(t). The scanning
procedure associated with Bayesian discriminant analysis—which differs
from that used in stepwise regression analysis—is applied in selecting
the xh(t)∗. The xh(t)∗ selected for P(Chk ; xh(t)∗) may or may not be the
same as the xh(t)∗ selected in forecasting the continuous variable zSGMh(t).
Statistical software such as SPSS include a stepwise scanning algorithm
for choosing elements of xh(t)∗ and estimating P(Chk ; xh(t)∗) under both
(11.2.3) and (11.2.5). When the normality assumption is invalid (or lacks
robustness under moderate assumption violations), logistic regression
analysis provides an alternative modeling approach, as discussed in
Section 11.3.

The algorithm for choosing the subset xh(t)∗ from xh(t) is based on the
application analysis of variance in the first step and then a series of analyses
of covariance in subsequent steps. For this algorithm, the T categories
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are considered as T treatments in an analysis of variance in a completely
randomized design model. In the first step, each variable in xh(t) is regressed
on the T treatments. That variable in xh(t) for which the variation among
treatments is most significant, say xh1(t)∗, is chosen for inclusion in xh(t)∗.
The second step repeats the first step in selecting xh2(t)∗ after adjusting
for xh1(t)∗ as a covariable. The third step repeats the previous step in
selecting xh3(t)∗ after adjusting for the covariables xh1(t)∗ and xh2(t)∗.
This process continues until no remaining variable in xh(t) accounts for
significant variation among treatments. This algorithm for selecting xh(t)∗,
which is termed the variable selection stage, precedes and is distinct from
the estimation stage where parameters in (11.2.3) and (11.2.5) are estimated.

Once xh(t)∗ is selected, the P(Chk ; xh(t)∗) are estimated after µhk(t)∗

and Vhk (t)∗ are replaced by sample estimates. The normality assumption
thus becomes a deciding factor in estimating parameters in P(Chk ; xh(t)∗).
The Box (1949) statistic is used to test the hypothesis H0 : Vhk (t) = Vh(t)
for all k versus Ha : Vhk (t) �= Vh(t).

Regarding categorical forecasts for NBA and NFL games, as well as
those for equity price changes, the equality of variance–covariance matrices
under Ho is usually rejected. This is to be expected since the extreme
categories tend to display greater variability than the middle categories.
Moreover, off-diagonal elements of the Vhk (t) may vary when comparing
categories corresponding to winning performances with those corresponding
to losing performances. The extent of differences between the Vhk (t) tend
to be team specific.

Forecasts for the three categories in Table 1.1.1 are based on the appli-
cation of (11.2.5). The Box test rejects H0 : Vhk (t) = Vh(t) for k = 1, 2, 3.
The stepwise algorithm for selecting xh(t)∗ identified the three variables on
the right-hand sides of equation (10.2.4) along with GSD(NYG, t−1) and
[u6(t−10)][STREAK (NYG, t−1)]. The Mahalanobis D2 distance is pre-
sented for each of the three categories in Table 11.2.1.

Based on Table 11.2.1 results, the expected winning margin (EWM)
for the Giants is obtained by multiplying the midpoint (or another repre-
sentative value) of each category by the probability associated with that

TABLE 11.2.1 Results of Bayesian Discriminant Analysis: Categorical Forecasts for the
Giants vs. the Patriots in Super Bowl 2008

DIFF(NYG, t∗)a D2 Probability Odds

<−7 1.77 0.334 $2.01 to 1
[−7, 7] 2.37 0.106 $13.3 to 1
>7 0.43 0.560 $0.79 to 1

a∗t = Super Bowl 2008 vs. NE.
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category. The midpoint of [−7, 7] is zero. However, for the six games
that the NYG won or lost by 7 or fewer points, the average value is 3.50.
For the outer categories, the associated midpoints are taken as the average
number of points that accompanied NYG losses and wins by more than 7
points. During the 2007–2008 season, the Giants lost by an average of 15.8
points in the five losses by more than 7 points and won by an average of
15 points in the six wins by more than 7 points. As such,

EWM (NYG, t = Super Bowl 2008 vs. NE) = 0.334(−15.8) + 0.116(0)

+ 0.560(15) = 3.4 points

or

EWM (NYG, t = Super Bowl 2008 vs. NE) = 0.334(−15.8) + 0.116(3.5)

+ 0.560(15) = 3.5 points.

Relative to the line, these categorical forecasts confirmed the Table 10.2.3
point forecast of a NYG win by 4.8 points, which is based on equation
(10.2.4).

11.3 LOGISTIC REGRESSION ANALYSIS

For periods of market inefficiency, Bayesian discriminant analysis usually
provides effective categorical forecasts results when nonconstant dispersion
matrices are imposed under the normality assumption. When the multivari-
ate normality assumption is invalid, logistic regression provides both an
alternative and a companion modeling approach.

If uniform priors are assumed in (11.2.3), then

P(Chk ; xh(t)) = exp{λhk + λ′
hkxh(t)/[�k∗ exp{λhk∗ + λ′

hk∗xh(t)}]
(11.3.1)

defines a system of T equations. Without the prespecified relationships
between the regression parameters (λh , λhk) in terms of the parameters of
the multivariate normal distribution [as given in (11.2.4) or some other pre-
specified distribution], the equations defined by (11.3.1) are underidentified;
that is, there is more than one solution to the (λhk , λhk) that leads to the
same probabilities.

To make the system in (11.3.1) identifiable in the absence of a distribu-
tional assumption for xh(t), the value of (λhk , λhk) for one of the equations
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is set to zero. It is arbitrary which of the (λhk , λhk) is equated to zero
since they each yield the same probabilities. Suppose that we set to zero
(λh1, λh1), the regression parameters corresponding to the first category
(termed the reference category). Then

P(Ch1; xh(t)) = 1/[1 + �j exp{λhj + λ′
hjxh(t)}],

P(Chj ; xh(t)) = exp{λhj + λ′
hjxh(t)/[1 + �j exp{λhj + λ′

hjxh(t)}],
(11.3.2)

where j = 2, . . . , T . These equations define the multinomial logistic regres-
sion model and lead to the following probability ratios relative to the
reference category:

P(Chj ; xh(t))/P(Ch1; xh(t)) = exp{λhj + λ′
hjxh(t)}. (11.3.3)

The SPSS stepwise procedure for selecting xh(t)∗ from xh(t) is analogous
to that for stepwise regression except that it is in terms of nonlinear rather
than linear estimation The last step of the variable selection stage provides
estimates of the P(Chj ; xh(t)∗)/P(Ch1; xh(t)∗ which allow the estimation
of P(Ch1; xh(t)∗ and the P(Chj ; xh(t)∗.

11.4 ALLOCATING BETTING MONIES IN THE SPORTS
GAMBLING MARKETS

A bet on one side of the line on a game carries the risk of a total loss,
whereas a bet on a financial equity in terms of a long or short position
carries the risk of a partial loss. How, then, should bettors allocate available
gaming monies to avoid ruin?

For team i in their forthcoming game t , the forecast P(GSD(i , t))∧ =
0.75 portends a highly favorable bet. However, given the gambler’s avail-
able gaming monies, the 25% chance of losing has a direct bearing on
how much to bet. Kelly (1956) betting provides one solution to the alloca-
tion problem. For bets with two outcomes, one involving losing the entire
amount bet and the other involving winning the amount wagered (after
a 10% betting commission fee) multiplied by the payoff odds, the Kelly
formula is given by

FR = (OD P − Q)/OD . (11.4.1)
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FR denotes the fraction of the monies available for betting; OD denotes the
odds to $1 that a particular team will win, P denotes the true probability
of winning, and Q = 1 − P . For even-money bets where the line OD = 1,

FR = 2P−1. (11.4.2)

An intuitive derivation of (11.4.2) is as follows. If the gambler bets
(2P−1)M , where M denotes the available betting monies, a winning bet
results in a gain of 2PM (ignoring the betting commission). For a losing
bet, the loss is 2(1 − P)M . If the gambler makes N bets under the same
conditions and wins N ∗ of these bets, the gambler will have won

2N PN ∗(1 − P)N −N ∗M , (11.4.3)

assuming independence between bets. If a second gambler bets (2P−1 +
P0)M for some positive or negative P0, the gain is (2P + P0)M for a win
and (2(1 − P) − P0)M for a loss. For the same number of wins and losses
as in (11.4.3), the second gambler will have

(2P + P0)
N ∗

(2(1 − P) − P0)
N −N ∗

M . (11.4.4)

The derivative of (11.4.4) with respect to P0 implies that P0 = 2[(N ∗/N ) −
P). But since limN →∞(N ∗/N ) = P , the gambler’s final gain is maximized
under (11.4.2).

For the case where P(GSD(i , t))∧ = 0.75 is the estimate of
P , FR = 2(0.75) − 1 = 0.5 (i.e., one should bet 50% of their available
betting monies). As opposed to single events such as the Super Bowl
and World Series games, there are usually a number of bets to be made
on concurrent games at a given time. During the NFL regular season,
there are lines on DIFF(i , t) for as many as 16 games. Of this number, a
majority will likely have favorable modeling forecasts for either the home
or visiting teams. And if one adds the lines on TOT(i , t), the number of
favorable bets may double. For simultaneous bets on concurrent games,
outcomes are, for the most part, independent. The same cannot be said for
comparable bets on equities in financial markets.

Suppose, for example, that there are favorable betting scenarios for five
NBA games scheduled for the same day. In (11.1.8), let P(GSD(i , t) ≥
0.5;α∧, γ∧), be abbreviated by P(i ) and suppose that the five favorable
betting scenarios are: P(1) = 0.75, P(2) = 0.7, P(3) = 0.65, P(4) = 0.60,
and P(5) = 0.55. Applying (11.4.2) to each scenario, we have, respectively,
FR(1) = 0.5, FR(2) = 0.4, FR(3) = 0.3, FR(2) = 0.2, and FR(5) = 0.1.
This means that 50% of the gambling money would be allocated to the most
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TABLE 11.4.1 Allocation of $1000 to Five Favorable Betting Scenarios Under Kelly
Betting

Betting Proportion of Amount
Scenario Fr = 2P-1 $1 000 Bet Bet

P(1) = 0.75 0.50 0.500 $500
P(2) = 0.70 0.40 0.200 200
P(3) = 0.65 0.30 0.090 90
P(4) = 0.60 0.20 0.042 42
P(5) = 0.55 0.10 0.017 16.80

Total 0.849 $848.80

favorable bet. Forty percent of the remaining 50% [or (0.5)(0.4) = 20%]
would be allocated to the second most favorable bet. Thirty percent
of the remaining 30% [or (0.3)(0.3) = 9%] would be allocated to the
third most favorable bet. Twenty percent of the remaining 21% [or
(0.2)(0.21) = 4.2%] would be allocated to the fourth most favorable bet.
Finally, 10% of the 16.8% [or (0.10)(0.168) = 1.68%] would be allocated
to the fifth most favorable bet. Table 11.4.1 summarizes Kelly betting for
this scenario when $1000 is available for betting. Of the $1000, $151.80
is not bet.



12
Financial/Mathematical

Illiteracy and Adolescent
Problem Gambling

12.1 THE CALL FOR FINANCIAL/MATHEMATICAL LITERACY
IN 21st-CENTURY AMERICA

Financial and mathematical literacy underlies effective functioning of the
nation’s economy and markets.

. . . access to wealth should be the hope of every American and financial liter-
acy is an essential tool to make that hope a reality. (Former Treasury Secretary
Paul O’Neill, 2002)

. . . for an increasingly complex financial system to function effectively market
participants must make the type of informed judgments that promote their own
well-being and foster the most efficient allocation of capital. (Alan Greenspan,
2002)

A report by the Federal Deposit Insurance Corporation issued 12/2/09
reported that 60 million Americans live without a bank account or use
nonbank operations such as pawn shops and payday lenders to handle their
finances. The FDIC survey revealed vast racial disparities in access to finan-
cial services. Almost 22% of black households had no bank account com-
pared with 3.3% for white households. The report could increase political
pressure on banks to do more for their communities after unprecedented
government efforts to bail out the sector (O’Conner and Guerrera, 12/3/09).

Forecasting in Financial and Sports Gambling Markets: Adaptive Drift Modeling, By William S. Mallios
Copyright  2011 John Wiley & Sons, Inc.
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Numeracy underlies our daily actions and personal finance. How do you
split a lunch bill three ways? How do you mentally estimate discounts, tips,
and sale prices? How do you compare credit card offers with different inter-
est rates for different periods of time? How do you choose between insurance
plans or finance plans for buying a house?

The term innumeracy was coined to describe an endemic deficiency: a
lack of grasp of numbers . Innumeracy and financial illiteracy are inextrica-
bly related and may be described as ongoing epidemics based on common
viruses. If so, what are the origins?

American high schools are obsolete. Until we design them to meet the needs
of the 21st century, we will keep limiting, even ruining, the lives of millions
of Americans. (Bill Gates)

American high schools were designed in the early 20th century and are
currently accomplishing the goals of that outdated era. When secondary
education became the norm for American youth, its goal was to separate
students who could manage classic theoretical education from those who
could not, while fostering enough literacy to feed the thriving industrial base
with productive workers. From 1900 to 1950, roughly 30% of the students
made it through these schools; the remainder dropped out and went into the
many skilled and semiskilled jobs of that time. After 1950, these jobs were
gradually diminished or outsourced and the need for an educated, skilled
workforce increased dramatically.1

Unfortunately, the need for rigorous education in a global economy has
not been translated into action. As such, we are faced with transforming an
outdated system into one that meets globalization’s needs. The transforma-
tion of higher education is equally challenging. For centuries, particularly in
Europe, where the Industrial Revolution started, education usually followed
economic growth. Now higher education is preceding that of the economy,
and higher education precedes globalization.2

1Paraphrased from American Schools can be Saved by Business by S. Weill, Chairman of
Citigroup, and J. Ferrandino, President of the National Academy Foundation, Financial
Times , 6/1/05.
2China has experienced the strongest growth in scientific research over the past three decades
of any country . . .and is on course to overtake the U.S. by 2020 .. . .Three main factors are
driving Chinese research. First is the government’s enormous investment . . .at all levels of the
system from schools to postgraduate research. Second is the organized flow of basic science
to commercial applications. Third is the efficient and flexible way in which China is tapping
the expertise of its extensive scientific diaspora in North America and Europe, tempting back
mid-career scientists with deals that allow them to spend part of the year working in the west
and part in China (Cookson, 1/26/10).
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To reinvent secondary education, schools within schools have been cre-
ated through public–private partnerships with the business and professional
worlds. The reason such schools are said to provide viable and sustain-
able solutions is that they embody what reformers characterize as the new
“3 R’s”: rigor, relevance, and relationships. The new “3 R’s” are intended
to ensure that the content is challenging and provides skills to compete
in the 21st century and that students are connected to and interact with
adults—mentors, role models, and teachers—who are interested in their
success. Although there have been claims of success, the effectiveness of
such programs remains uncertain. Longitudinal studies, if designed properly,
should provide answers.

12.2 DATA, INFORMATION, AND THE INFORMATION AGE

Information, defined as the communication of knowledge or intelligence,
is contrasted with data, defined as well or ill-defined, objective or subjec-
tive measurements from which information can be extracted. Under these
definitions, it is a misnomer to refer to data as information since infor-
mation must be extracted from data if knowledge is to be communicated.
Without a means of extracting such information—such as through math-
ematical reasoning—data are useless. The following statement illustrates
this misnomer.

More information has been produced in the last 30 years than in the previous
5000. A weekday edition of the New York Times has more information than
the average 17th-century man or woman would have come across in an entire
lifetime.

If data were substituted for information, this quotation would reflect the
fact that we live in an unprecedented Age of Data Acquisition and, perhaps
more precisely, an Age of Data Oversaturation . Indeed, if data acquisition
processes were to cease henceforth, it would take decades to analyze and
extract information from current databases. The Age of Data Acquisition
bodes ill for societies where limited mathematical reasoning and financial
illiteracy are the norm, especially in complex, heterogeneous societies such
as ours.

The reality is that financial illiteracy is far more the rule than the excep-
tion. Such illiteracy has carried over from primary to secondary to higher
education and beyond. Consider, for example, results of a study that exam-
ined the existing state of financial and statistical literacy among graduating
California State University (CSU) business students. (The CSU system,
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with 450,000 students, is the world’s largest system of higher education.)
Schools and colleges of business within the CSU system collaborated to
create an exit examination for graduating seniors. The examination, termed
the Business Assessment Test (BAT), was given for the first time in the
spring of 2005 to 2454 graduating seniors on 13 campuses that host busi-
ness programs. A total of 80 questions spanned content in eight business
disciplines.

Table 12.2.1 summarizes the BAT scores. Average scores, in terms of the
percentage of questions answered correctly in each of the eight disciplines,
are given both system-wide and for the 213 graduating seniors at the Craig
School of Busines, CSU Fresno. The substandard test scores in finance and
statistics can be attributed to the low state of financial and mathematical
literacy among graduating CSU business students—a condition that is not
limited to graduating business school students.

Since there were faculty controversies regarding the selected questions
that comprised the BAT, particularly in statistics and finance, the writer
administered an anonymous financial literacy test (described in detail in
Section 12.3) to 250 business students at CSU Fresno in the spring of
2006. The students were mostly upper division. All had completed prereq-
uisite courses in mathematics and were currently enrolled in statistics. Many
had completed or were concurrently enrolled in economics, business law,
and finance. Results of selected questions are indicative of the graduating
seniors’ abilities in finance.

• 78% did not know that bond prices and interest rates moved in opposite
directions.

• 79% did not know the meaning of selling short.
• 72% did not know the meaning of a bear market.

TABLE 12.2.1 Results of the 2005 CSU Business Assessment Testa

Business Average Scores Average Scores for
Discipline System-wide CSU Fresno

Management 51.96 51.64
Accountancy 48.60 47.70
Business law 49.92 47.89
Statistics 41.62 34.74
Finance 38.11 36.31
Economics 46.23 44.03
Marketing 55.88 53.05
Management information systems 63.14 61.40

aAverage percent of questions answered correctly within each of eight business disciplines.
Sample size: system-wide, 2454; CSU Fresno, 213.
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• 74% answered the following question incorrectly: Suppose you deposit
$1000 in a savings account at an interest rate of 5% compounded
annually. What will be the total worth of your savings in two years?

These students were also asked to express their views on American soci-
ety through the following choices:

• Despite its shortcomings, American society offers equal opportunity—a
fair chance for advancement . (44%)

• For many, the window of opportunity in America is limited . (29%)
• Though some get ahead through merit, the gospel of equal opportunity

is basically a sham . (13%)
• No opinion. (14%)

Analyses showed that low test scores were associated with apparent
societal disenchantment , which is reflected by answers to the last question.
An implication is that we must begin to secure our intellectual health in
finance and mathematics and it must begin early in a student’s intellectual
training. Otherwise, we doomed to the consequences of past and current
realities.

Markets need a fresh supply of losers just as builders of the ancient pyramids
of Egypt needed a fresh supply of slaves. (Alexander Elder)

12.3 THE COMPANION EPIDEMIC OF ADOLESCENT
PROBLEM GAMBLING

The epidemics of financial and mathematical illiteracy cannot be divorced
from the emerging epidemic of adolescent problem gambling. As early as
1991, Time magazine estimated that of the nearly 8 million compulsive
gamblers in the United States, fully 1 million were teenagers. Based on the
exponential growth of casino, Internet, and TV poker gambling over the past
two decades, World Poker tour officials estimate that 100 million people in
the United States play poker—up from 50 million 18 months ago (Growth
Sets the Stage for Addiction, Web MD feature, 1/24/05) It is understandable
that the science of gaming focuses on finding the most effective means of
manipulating impulses so that gamblers’ losses are maximized (U.S. News
& World Report , 5/23/05).

These trends have spurred considerable research on the mental health
effects of gambling on the general public, especially since the mid-1990s
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when studies conducted by the American Psychiatric Association (APA)
found little research on pathological gambling due to the limited avail-
ability of survey data (APA Diagnostic and Statistical Manual , 4th edition,
1994).

In 1997, the Harvard Medical School Division of Addictions conducted
a meta-analysis of 120 gambling studies in the United States and Canada
to better understand the complexity and prevalence of disordered gambling
(Estimating the Prevalence of Disordered Gambling Behavior in the United
States and Canada: A Meta-analysis , Harvard Medical School Division
on Addictions, 1997). Two of the main research questions were, first, to
identify the percentage of the population that could be classified according
to three levels—level 1: no evidence of problem gambling, level 2: problem
gambling, and level 3: pathological gambling (addiction)—and second, to
estimate the magnitude of the problem in subpopulations of the general
public, such as youths, college students, and adults.

The Harvard study found that just under 2% of the adult population dis-
played level 3 addiction, and that 4% of youths and almost 5% of college
students displayed level 3 pathological addiction. Of greater concern to the
researchers was that 4% of the adult population displayed level 2 profiles,
while almost 9.5% of the youth and college students displayed level 2 pro-
files. This finding disturbed the researchers since they felt that given the
exponential growth of gambling venues, the percentages of youth and col-
lege students moving from level 2 to level 3 would show drastic increases
over the next 10 to 15 years. They noted that numbers gambling is so com-
mon that many people do not even consider lottery playing to be gambling
(p. 74).

The study found very limited regional or socioeconomic data available
to identify the number or specific subpopulations that might display level 2
or level 3 tendencies of gambling addiction. Without this information, local
health professionals cannot generate the necessary public support to commit
staff and program funding to address this mental health issue appropriately.
Local health providers are thus limited in their ability to assist teachers and
parents who identify those needing assistance. Also, there are no protocols
for referrals for treatment for those displaying level 2 and 3 tendencies.

12.4 RESULTS OF A PILOT STUDY ON ADOLESCENT
PROBLEM GAMBLING AND FINANCIAL/MATHEMATICAL
LITERACY

The financial literacy questionnaire, summarized briefly in Section 12.2,
was adminsitered along with the South Oaks Gambling Screen Revised for
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Adolescents (SOGS-RA). SOGS-RA is a well-know, validated instrument
that is comprised of questions 16–35 in Table 12.4.1. 3 However, only
responses to questions 24–35 are used to classify respondents according
to level 1, 2, or 3 gambling profiles. Classification of individuals into level
2 or 3 is based on the number of yes answers to questions 25–36 and
answers of every time or most of the time to question 24 (Winters, 1993).
The purpose of the Table 12.4.1 questionnaire was to evaluate the level of
basic financial literacy, to estimate the prevalence of adolescent problem
gambling and to estimate relations, if any, between financial literacy and
the propensity to gamble.

Table 12.4.1 presents the scored results of the SOGS_RA portion of
the Table 12.4.1 questionnaire. Also included are results from an earlier
SOGS_RA survey conducted in Oregon (Carlson et al., 1998). The Oregon
results are similar to comparable studies conducted elsewhere in the United
States and Canada. The disturbing CSUF results are comparable to those
from a study conducted on institutionalized adolescents in Louisiana. It
appears that the CSUF sample is a reflection of ethnicities, socioeconomic
backgrounds, and casino gambling environments that differ from the sample
in the Oregon study. Over 60% of the CSUF respondents stated that they
first gambled for money during high school or before. One implication is
that proposed intervention programs aimed at controlling problem gambling
must occur at the high school level or before.

Table 12.4.3 presents the three gambling profile percentages for each of
the three levels of financial literacy. The low level is defined by four or
fewer correct answers to questions 1–13, the middle level by five to nine
correct answers, and the high level by nine or more correct answers. The
significant interaction between rows and columns indicates that, on average,
the severity of gambling problems tends to increase (decrease) as financial
literacy scores decrease (increase).

Inferences based on Table 12.4.3 results become more complicated
once ethnicity is considered. Table 12.4.4 presents the trend in gambling
profiles within each of the five ethnic groups. The Black/African-
American group shows an unusually disproportionate percentage of
problem/pathological gamblers. The corresponding percentage for the

3The CSU/University of California Integrated Second Year Readiness Test is a diagnostic test
of topics needed for success in a second-year integrated mathematics course. It was designed
to test undergraduates’ preparedness for the required course in business statistics. The test
consists of 45 multiple-choice questions covering topics in basic algebra and geometry, topics
that are normally presented in the first two years in high schools with college prep options.
Student performances on this test, administered by the writer to business students over the
course of eight semesters, directly reflected those of the financial literacy questionnaire in
Table 12.4.1.
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TABLE 12.4.1 Financial Literacy Questionnaire and the South Oaks Gambling Screen:
Revised for Adolescence

INSTRUCTIONS: You will be answering this questionnaire anonymously. Do not put your
name or self-identifying information on the answer (scantron) form. For all questions, select
one and only one of the choices given.

Answer questions 1–3 to the best of your ability—in the sense that you should not guess but,
rather, choose the option ‘‘don’t know the answer’’ when there is doubt in your mind
regarding the correct answer.

1. When you purchase stocks issued by a large corporation, you:

A. are lending money to the corporation

B. are exercising effective control of the corporation’s management (79%)

C. have a legal claim on the corporation’s earnings

D. are buying shares of the corporation’s ownership

E. don’t know answer to question (8%)

2. When you purchase bonds issued by a large corporation, you:

A. are lending money to the corporation (61%)

B. are exercising effective control of the corporation’s management

C. have a legal claim on the corporation’s earnings

D. are buying shares of the corporation’s ownership

E. don’t know answer to question (61%)

3. Which of the following is true regarding the price of bonds?

A. bond prices increase as interest rates increase

B. bond prices are directly related to stock prices

C. bond prices decrease as interest rates increase (22%)

D. bond prices are directly related to the rate of unemployment

E. don’t know answer to question (19%)

4. Which of the following is true about sales taxes?

A. sales taxes are regulated by the federal government

B. the national sales tax is currently at 6.5%

C. individuals with very low incomes are not required to pay sales taxes

D. they are taxes that increase consumer costs (41%)

E. don’t know answer to question (11%)

5. For a savings account at a bank, which of the following is correct regarding interest
earned?

A. earnings from savings accounts may not be taxed

B. sales tax may be charged on interest earned

C. interest cannot be earned unless one is at least 18 years old

D. income tax may be charged on the earned interest if one’s income is sufficiently high
(29%)

E. don’t know answer to question (37%)

6. Which group would have the greatest difficulty during periods of high inflation?

A. working couples

B. illegal aliens

C. retired people living on fixed retirement income (67%)

D. individuals whose savings exceed 10% of their gross income

E. don’t know answer to question (18%)
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TABLE 12.4.1 (Continued)

7. Which of the following types of investment would best protect the purchasing power of a
family’s savings in the event of a sudden increase in inflation?

A. a twenty-five-year corporate bond

B. a house financed with an adjustable interest rate

C. a house financed with a fixed interest rate (47%)

D. renting an apartment instead of owning a condo

E. don’t know answer to question (35%)

8. If the quantity of available housing in a community is less than the quantity of housing
demanded, the average price of housing:

A. will remain approximately the same

B. will fall to clear the market

C. will rise to clear the market (67%)

D. will be unaffected by the supply and demand for housing

E. don’t know answer to question (10%)

9. In a bear market, prices of securities generally:

A. increase

B. usually remain approximately the same

C. decrease (12%)

D. stabilize with increased volatility

E. don’t know answer to question (72%)

10. A nation’s productivity is measured in terms of:

A. the total value of all final goods and services produced (50%)

B. the average dollar (or dollar equivalent) output per hour of work

C. the total amount invested in its equity capital markets

D. the difference between gross revenues and expenditures

E. don’t know answer to question (22%)

11. If you ‘‘sell short’’ the stock issues of a particular corporation, you are:

A. liquidating all the stock that you own in the particular corporation

B. selling the stock only for the short term

C. selling the stock at the current price and repurchasing the stock at a future date (21%)

D. trading corporate warrants for stock shares

E. don’t know answer to question (58%)

12. When government expenditures exceeds its receipts during a specified period of time:

A. the national debt tends to be unchanged

B. there is a budget surplus

C. the balance of payments between imports and exports decreases

D. there is a budget deficit (78%)

E. don’t know answer to question (13%)

13. Suppose you deposit $100 in a savings account at an interest rate of 5% compounded
annually. What will be the total worth of your savings in two years?

A. $105.00

B. $110.00

C. $110.25 (26%)

(continued overleaf)
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TABLE 12.4.1 (Continued)

D. $111.25
E. don’t know answer to question (42%)

Please answer questions 14–45 honestly by selecting on your answer form one and only
one choice for each of the following questions. It is emphasized that your answers to these
questions cannot be identified with your name.

14. How sure do you feel about your ability to manage your own finances?

A. Not sure at all—I wish I knew a lot more about money management (13%)

B. Not too sure—I wish I knew more about money management (19%)

C. Somewhat sure—I understand most of what I’ll need to know (48%)

D. Very sure—I understand money management very well (20%)

15. Which of the following choices best reflects your view of American society?

A. Despite its shortcomings, American society offers equal opportunity—a fair chance for
advancement. (44%)

B. For many, the window of opportunity in America is limited. (29%)

C. Although some get ahead through merit, the gospel of equal opportunity is basically a
sham. (13%)

D. No opinion. (14%)

16. Have you ever played the numbers or bet on lotteries?

A. Not at all (46%)

B. Less than once a week (50%)

C. Once a week or more (4%)

17. Have you ever played cards for money?

A. Not at all (31%)

B. Less than once a week (57%)

C. Once a week or more (12%)

18. Have you ever bet on sporting events?

A. Not at all (49%)

B. Less than once a week (47%)

C. Once a week or more (4%)

19. Have you ever gone to casinos (legally or otherwise)

A. Not at all (16%)

B. Less than once a week (77%)

C. Once a week or more (7%)

20. Have you ever watched the poker tournaments on television?

A. Not at all (25%)

B. Less than once a week (57%)

C. Once a week or more (18%)

21. Have the television poker tournaments ever motivated you to play cards for money?

A. Not at all (64%)

B. Less than once a week (27%)

C. Once a week or more (9%)
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TABLE 12.4.1 (Continued)

22. Have you ever participated in any type of Internet gambling (such as poker, sports betting,
etc.)?

A. Not at all (77%)

B. Less than once a week (17%)

C. Once a week or more (6%)

23. What is the largest amount of money you have ever gambled with on any one day?

A. Never gambled (13%)

B. Less than $10 (18%)

C. More than $10 but less that $100 (44%)

D. More than $100 but less than $1 000 (23%)

E. More than $1 000 (2%)

24. How often have you gone back another day to try and win back money that you lost
gambling?

A. Every time (2%)

B. Most of the time (9%)

C. Some of the time (24%)

D. Never (55%)

E. I have never gambled (10%)

25. When you were betting, have you ever told others you were winning money when you
weren’t?

A. Yes (8%) B. No (92%)

26. Has your betting money ever caused any problems for you, such as arguments with family
and friends, or problems at school or work?

A. Yes (13%) B. No (87%)

27. Have you ever gambled more than you had planned to?

A. Yes (43%) B. No (57%)

28. Has anyone criticized your betting or told you that you had a gambling problem, whether
you thought it true or not?

A. Yes (12%) B. No (89%)

29. Have you ever felt bad about the amount of money you bet or about what happens when
you bet money?

A. Yes (37%) B. No (63%)

30. Have you ever felt like you would like to stop betting, but didn’t think you could?

A. Yes (11%) B. No (89%)

31. Have you ever hidden from family or friends any betting slips, IOUs, lottery tickets, money
that you won, or any signs of gambling?

A. Yes (9%) B. No (91%)

32. Have you had money arguments with family or friends that centered on gambling?

A. Yes (9%) B. No (91%)

33. Have you borrowed money to bet and not paid it back?

A. Yes (5%) B. No (95%)

34. Have you ever skipped or been absent from school or work due to betting activities?

A. Yes (8%) B. No (92%)

(continued overleaf)
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TABLE 12.4.1 (Continued)

35. Have you borrowed money or stolen something in order to bet or to cover gambling
activities?

A. Yes (6%) B. No (94%)

36. To what extent do you think that answers to questions 16–35 give a valid assessment of
gambling by college students?

A. Not at all (7%)

B. To a lesser extent (22%)

C. Somewhere between a lesser extent and a greater extent (42%)

D. To a greater extent (14%)

E. No opinion (15%)

37. What percent of your friends gamble for money?

A. Less than 5% (44%)

B. 6% to 15% (18%)

C. 16% to 33% (17%)

D. 34% to 50% (11%)

E. More than 50% (10%)

38. What percent of your friends do you think have a gambling problem?

A. Less than 3% (76%)

B. 3% to 6% (8%)

C. 7% to 9% (9%)

D. 9% to 12% (5%)

E. More than 12% (2%)

39. At what age did you first gamble for money?

A. Never gambled (14%)

B. Before high school (23%)

C. During high school (37%)

D. During college (24%)

E. After college (2%)

40. What is your gender?

A. Female (36%) B. Male (64%)

41. You are currently enrolled as a:

A. Freshman (8%)

B. Sophomore (28%)

C. Junior (53%)

D. Senior (11%)

E. Other (0%)

42. What is the highest level of schooling that your mother completed?

A. Did not complete high school (12%)

B. Completed high school and did not attend college (20%)

C. Completed some college (36%)

D. College graduate or beyond (26%)

E. Don’t know (6%)



12.4 ADOLESCENT PROBLEM GAMBLING AND FINANCIAL/MATHEMATICAL LITERACY 235

TABLE 12.4.1 (Continued)

43. What is the highest level of schooling that your father completed?

A. Did not complete high school (15%)

B. Completed high school and did not attend college (20%)

C. Completed some college (25%)

D. College graduate or beyond (33%)

E. Don’t know (7%)

44. How do you describe yourself?

A. Asian or Asian-American (16%)

B. Black or African-American (6%)

C. Hispanic or Latino (27%)

D. White or Caucasian (44%)

E. Other (7%)

45. How would you describe your current employment status?

A. I work full time throughout the year (15%)

B. I work part time throughout the year (59%)

C. I work full or part time in the summer and don’t work during the school year (11%)

D. I never have been formally employed outside the home (7%)

E. Other (8%)

TABLE 12.4.2 CSU Fresno Pilot Survey: Results of SOGS-RA Testing

Gambling Level CSU Fresno (%) Oregon Study (%)

Level 1 (no apparent problem) 61.6 84.7
Level 2 (problem gambler) 20.5 11.2
Level 3 (pathological gambler) 17.9 4.1

TABLE 12.4.3 CSU Fresno Survey Results: Gambling Profile Levels with
Each Financial Literacy Level

Gambling Profile

Financial Literacy Level Level 1 (%) Level 2 (%) Level 3 (%)

Low 30 30 40
Medium 40 37 23
High 43 39 18

Asian/Asian-American group is also significantly higher than those for
the Hispanic/Latino–White/Caucasian–Other groups. The peculiarity is
that the financial literacy scores for the Asians/Asian-Americans were
significantly higher than those for all other groups. This result would
appear to contradict the results in Table 12.4.3.

A possible explanation is that relative to the other ethnic groups,
Asians/Asian Americans have a propensity to both gamble and to excel in
finance and mathematics. Two huge casinos in Connecticut—Foxwoods and
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TABLE 12.4.4 CSUF Fresno Survey Results: Gambling Profile
Levels within Ethnicity

Gambling Profile

Ethnicity Level 1 (%) ≥ Level 2 (%)

Asian/Asian-American 57.6 42.4
Black/African-American 33.3 66.7
Hispanic/Latino 65.5 34.5
White/Caucasian 64.3 33.7
Other 63.3 36.7

Mohegan Sun—send more than 100 buses every day to pick up customers
in predominantly Asian neighborhoods of Boston and New York .. . .In a
Washington Post article titled “Casinos Are Aggressively Courting Asian
Americans,”. . .Foxwoods Resort Casino (the world’s biggest in terms of
gambling floor space) estimates that at least a third of its customers are
Asian .. . .If financial advisors knew as much about Asians as the casinos
do, they’d have a much better chance of attracting them as clients. Casino
dealers know not to touch Chinese customers on the shoulder—a sign
of bad luck. They don’t say the number 4, which sounds like the word
for death. (“Nine” also sounds to the Japanese like the word for pain .)
At Pai Gow and baccarat tables, which have numbered seats, Foxwoods
has even omitted the No. 4 seat .. . .How does a propensity for gambling
jibe with the tendency to save? Surely people don’t accumulate money
just for the pleasure of risking it on games of chance.. . . The underlying
motivation may have a lot to do with joss, which has connotations of both
“luck” and “fate.” It’s an important factor in the lives of many Chinese,
whose philosophy is often a blend of Christianity and Buddhism/Taoism.
Gambling is a way of inviting good joss, which can make a person wealthy
in a heartbeat (Luck and the Chinese, Investment Advisor, 8/1/08).

As an initial modeling exercise, Fisher’s discriminant analysis (see
Section 11.1) was applied. The dependent variable is defined as follows:

LEV = 0 if gambling profile = level 1

= 1 if gambling profile = level 2 or level 3. (12.4.1)

The independent variables to be scanned for significance in a linear model
include the total number of correct answere to financial literacy questions
1–13, 16–23, 37–40 and 42–45 and all two-factor interactions between
these variables. Answers to questions 42–45 were first converted to dummy
variables. Through stepwise linear regression, LEV was predicted in terms
of the following six variables (with significance at the 0.05 level or below
and R2 = 0.61):
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1. Question 22: The greater the participation in Internet gambling, the
greater the likelihood of LEV = 1.

2. Question 38: The greater the percentage of friends that have gambling
problems, the greater the likelihood of LEV = 1.

3. Question 20 (gender); females are less likely to be problem gamblers
that males.

4. Financial literacy score (FLS): The greater the FLS, the less the like-
lihood of LEV = 1.

5. The interaction FLS × question 23: The greater the FLS and the
greater the amount gambled on any day, the greater the likelihood
of LEV = 1.

6. The interaction FLS × question 16: The greater the FLS and the
greater the frequency of playing the numbers or betting on lotteries,
the greater the likelihood of LEV = 1.

The relatively large level 2 percentage for the Asian/Asian-American
group in Table 11.4.4 is explained in terms of the last three variables in
the list above. While the Asian/Asian-American respondents had higher
financial literacy scores relative to the other ethnicities, they also gambled
in greater amounts and played the numbers games and lotteries with greater
frequencies.

Results of this study form the basis for working conjectures that should be
used in designing follow-on studies and proposing remedial interventions.
Major conjectures/recommendations are as follows:

1. There is an emerging epidemic of adolescent problem gambling in the
Central California Valley.

2. The emerging problem gambling epidemic is related directly to the
nationwide epidemic of financial and mathematical illiteracy.

3. Intervention programs are necessary to address both problem gam-
bling and financial/mathematical illiteracy—with particular emphasis
on adolescents.

4. Beginning immediately at the high school level, culturally competent
intervention programs are necessary in at least three areas:
a. Identifying adolescent problem gamblers and referring them to

effective treatment programs
b. Establishing new, effective treatment programs whenever neces-

sary and evaluating the effectiveness of all programs
c. Developing instruction in financial/gambling literacy that is tailored

for each semester of high school
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5. The candlestick charts in finance and sports provide an exceptionally
effective means of promoting mathematical/financial literacy among
adolescents, especially when such instruction includes competitive
games.

These recommendations parallel results in a previous study by the writer
(Mallios, 1989) that led to a court-sponsored program that identified likely
recedivists among convicted drunk drivers and referred such recidivists to
effective treatment programs.



13
The Influenza Futures

Markets

13.1 MARKETS FOR EXPERT INFORMATION RETRIEVAL

The modeling transition is to seasonal influenza. The data under study are
in terms of (1) total deaths and (2) combined total deaths due to influenza
and pneumonia in the United States for each of 406 consecutive weeks
starting with the first week of 1996 and ending with the 51st week of 2003.
Figure 13.1.1 presents graphs of z1(t) and z2(t)−2, where

z1(t) = loge(deaths in the United States from influenza and pneumonia

during week t), (13.1.1)

z2(t) = loge(total deaths in the United States during week t).

The forthcoming analyses would have been more germane had they been
applied to a system of time series that included variables such as the weekly
incidence of seasonal flu, primary influenza viral pneumonia, secondary
influenza due to bacterial infection, and the H1N1 virus. However, as of
this writing, it appears that such a database has not been fully developed.

Avian and swine flu have been viewed as commodities in the futures
market for purposes of expert information retrieval. The Iowa Electronic
Market (IEM) has operated influenza futures markets since 2004. The
influenza market is a closed, invitation-only market with participants
limited to medical professionals and scientists in the health care fields who
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Figure 13.1.1 Weekly U.S. trends of deaths due to influenza and pneumonia (DIP) and total
deaths (DT) for each of 406 consecutive weeks starting with the first week of 1996 and ending
with the 51st week of 2003. The top and bottom trends denote, respectively, loge(DT) − 2 and
loge (DIP).
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Figure 13.1.2 Weekly trends in Figure 13.1.1 presented in terms of the ratio R =
loge(DPI)/ loge(DT).

have some knowledge of the virus’s development. In 2009, IEM expanded
to include the H1N1 virus for purposes of building practitioner-level
predictions of how the virus would spread, its severity, and its duration
(FluPrediction@Uiowa.edu).
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As of October 2009, IEM predicted a 70% chance that there will not
be enough H1N1 vaccine available to inoculate the target of 50 million
Americans until at least December 2009. It also predicted a more than 90%
chance that more than half of the U.S. flu cases this season will be swine flu
(Weitzman, 10/29/09). Figure 13.1.2, an alternative version of Figure 13.1.1,
presents the ratio R = loge(DPI)/ loge(DT) over the same time period.

13.2 ADAPTIVE SEASONAL TIME SERIES MODELING

Seasonal time series modeling can be approached in terms of either ARMA-
type processes (Box and Jenkins, 1976) or periodic regression (Bliss, 1958;
Mallios, 1989). For the seasonal, weekly data in Figure 13.1.1, the obser-
vations for a particular week of the year are related not only to the previous
week’s observations, but also to the observations of the comparable week
in the preceding year. As such, differencing such as

dzh(t) = [zh(t) − zh(t−52)] − [zh(t−1) − zh(t−53)] (13.2.1)

is employed to achieve stationarity in ARMA-type processes when coeffi-
cients are non-time varying. With time-varying coefficients, the modeling
procedure for (13.2.1) follows that given for (9.5.2).

A periodic regression model with a single harmonic is given by

zh(t) = a0 + a1 cos(mt − θ) + �i>0 ci u(t − i ) + εh(t)

= a0 + b1 cos(mt) + b2 sin(mt) + �i>0ci u(t − i ) + εh(t),

(13.2.2)

where h = 1, 2. The first expression for zh(t) in (13.2.2) is linearized
through the trigonometric identity cos(U − V ) = cos U cos V + sin U
sin V ; a1 is the semiamplitude, θ is the phase angle (or the time in angular
measure of the maximum); b1 = a1 cos θ and b2 = a1 sin(θ). The constant
m = 2π/52 converts the weeks (t) in a single cycle to angular measure
in radians. When the two time series are cointegrated, there is a single
cointegration vector; the ci represent the effects of the u(t − i ), the lagged
between-relation shocks. When the u(t − i ) do not adequately reflect both
between- and within-relation shocks, effects of moving average variables
can be recovered in a subsequent stage of modeling.

Let b1
∧ and b2

∧ denote OLS estimates of b1 and b2. Then the
amplitude is estimated by a1

∧ = (b2∧
1 + b2∧

2 )1/2 since (b2∧
1 + b2∧

1 ) =
a2∧

1 cos θ2 + a2∧
1 sin θ2 = a2∧

1 ; the phase angle θ is estimated by
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θ∧ = arctan(b2
∧/b1

∧). Adaptive periodic regression,1 as applied to the
zh(t) in (13.1.1), is expressed in terms of

zh(t) = a0(t) + a1(t) cos mt cos(θ(t)) + a1(t) sin mt sin(θ(t))

+�i>0ci (t)u(t − i ) + εh(t). (13.2.3)

The parameters a1(t) and θ(t) allow the semiamplitude and phase angle to
vary from one seasonal cycle to the next. For the model error, it is assumed
that

ε(t) = εh(t) : [0, �ε(t)], (13.2.4)

where allowances are made for possible time-varying volatility.
Exploratory applications of the two modeling approaches—model

(13.2.3) and model (9.5.2) with dzh(t) given by (13.2.1)—to the data
in Figure 13.1.1 resulted in somewhat more effective forecasts for the
periodic regression approach. As such, the current analysis will be
limited to model (13.2.3). However, in application, where frequent model
updates are advisable, forecasts based on both modeling options should be
compared for effectiveness.

Each of the time-varying parameters in (13.2.3) is assumed generated
in terms of a first-order linear regression process in elements of u∗(t−), a
vector containing relevant lags of the variable u∗(t); that is,

ω(t) = ω + w′
ωu∗(t−) + δω(t), (13.2.5)

where ω = a0, a1, θ and ci ; for example, θ(t) = θ + w′
θu∗(t−) + δθ(t);

the δω(t) denote model errors; the wω are regression vectors represent-
ing the effects of u∗(t−) on ω(t). When the u(t − i ) adequately reflect
both between- and within-relation shocks, u∗(t−) = u(t−), where u(t−)

is defined to contain relevant lags of u(t). When the u(t − i ) do not
adequately reflect within-relation shocks, u∗(t−) = (u(t−), ε(t−))′, where
ε(t−) is defined to contain all relevant moving average variables.

For

θ(t) = θ + w′
θu∗(t−) + δθ(t) (13.2.6)

1Model (13.2.2) is easily generalized to include higher harmonics (Bliss, 1958). Such gen-
eralizations are appropriate when they can be given physical interpretation. As reported in
the news media in November 2009, health officials were quoted as saying that H1N1 may
peak two to three times within 2009–2010. If so, additional harmonics should be considered
in (13.2.2).



13.3 FORECASTING WEEKLY INFLUENZA AND PNEUMONIA DEATHS 243

in (13.2.5), θ(t) is approximated by θ + w′
θu∗(t−), whereupon cos(θ +

w′
θu∗(t−)) and sin(θ + w′

θu∗(t−)) are approximated by the following
second-order series expansions:

cos[θ + w′
θu∗(t−)] ≈ cos θ − w′

θu∗(t−) sin θ − 0.5[w′
θu∗(t−)]2 cos θ,

sin[θ + w′
θu∗(t-)] ≈ sin θ − w′

θu∗(t−) cos θ − 0.5[w′
θu∗(t−)]2 sin θ.

(13.2.7)

Substitution of expressions on the right-hand sides of (13.2.5) and (13.2.7)
for the corresponding time-varying coefficients in (13.2.3) results in a linear,
higher-order reduced equation for zh(t) that includes first-order effects of the
variables cos(mt), sin(mt), u∗(t−), and higher-order effects of interactions.
This reduced equation is written in abbreviated notation as

zRh(t) = f [cos mt , sin mt , u(t−),v(t−);�] + εRh(t), (13.2.8)

where � represents the parameter vector and εRh(t) the reduced model error.
Equation (13.2.8) is used as a starting point for identifying an effective
forecasting model.

When u(t−) does not adequately reflect the moving average effects [as
denoted by the vector ε(t−)], it is first necessary to go through the process
of identifying significant predictors in model (13.2.8) in order to obtain an
initial estimate of elements of ε(t−). The next step is to identify MA and
bilinear variables to be included in the model. Following the latter identifi-
cation, nonlinear estimation is applied in obtaining an updated forecasting
model.

13.3 FORECASTING WEEKLY INFLUENZA AND PNEUMONIA
DEATHS

Modeling is initiated by showing that the two series in (13.1.1) are cointe-
grated. Following the procedure in (9.1.2)–(9.1.5), we fit the regression of
zDIP(t) = z1(t) on zDT(t) = z2(t) and obtain

zDIP(t) = −8.4815.2 + 1.6227.1zDT(t) + uDIP(t), R2 = 0.640,

(13.3.1)

where uDIP(t) denotes the residual. Following (9.1.5), duDIP(t) = uDIP(t) −
uDIP(t−1) is regressed on uDIP(t−1) and lags of duDIP(t) with the following

U
T

X
A

|x
7c

m
V

gT
j5

uE
=

|1
31

43
50

25
6



244 THE INFLUENZA FUTURES MARKETS

result:

duDIP(t)
∧ = − 0.163.62uDIP(t−1) − 0.416.78duDIP(t−1)

− 0.254.50duDIP(t−2) + 0.112.10duDIP(t−49)

+ 0.234.13duDIP(t−52) + 0.132.33duDIP(t−53). (13.3.2)

Since H0 in (9.1.4) is rejected, the two time series are cointegrated. As
such, the u(t − i ) in (13.2.3) are estimated by the uDIP(t − i ) as given by
(13.3.1). When the analysis in (13.3.1)–(13.3.2) is performed on different
segments of the data in Figure 13.1.1, the two time series remain cointe-
grated, although the coefficient estimates in (13.3.1) usually change to a
lesser extent.

For real-time forecasting with model updates occurring on a weekly basis,
stepwise regression (see Section 7.2) is applied for purposes of identify-
ing significant predictors for zRh(t) = zRDIP(t) in (13.2.10). As mentioned
earlier, once significant explanatory variables in model (13.2.10) are tenta-
tively identified, the next stage is to recover, if necessary, information from
significant moving average terms.

For the data in Figure 13.1.1, the following analysis is in terms of a model
update through the third week of 2002 (or week 316 in Figure 13.1.1). This
update precedes the peak period for zDIP(t) during 2002. Weighted stepwise
linear regression (see Section 7.2) is applied to (3.2.10) to identify signif-
icant predictors. The weights are in terms of the weeks in Figure 13.1.1;
that is, the more recent the week, the greater the weight of the observation.

The resulting prediction equation for zDIP(t) is given as follows:

zDIP(t)
∧ = 6.61 + 0.085.26 cos mt + 0.106.44 sin mt + 0.212.09u(t−2)

+ 0.374.14u(t−3) + 0.232.53u(t−4)

− 0.263.00u(t−49) + 0.273.09u(t−53)

+ 1.142.18[u(t−1)][u(t−2)] − 1.592.96[u(t−3)][u(t−4)]

+ 2.163.57[u(t−3)][u(t−52)]

− 0.882.70[u(t−52)]2 + 3.134.47[u(t−1)][u(t−2)](cos mt)

− 1.482.44[u(t−1)][u(t−50)](cos mt); (13.3.3)

R2 = 0.77. For this particular model update, the effects of moving average
variables are, for the most part, reflected in terms of the lagged u(t) and
their interactions.

Based on model (13.3.3), the one-step-ahead forecasts in Table 13.3.1
are seen to be reasonably close to the observed values. These results are
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TABLE 13.3.1 One-Step-Ahead Weekly Forecasts
Based on a Model Update Through the Second Week of
2002a

Week zDIP(t) zDIP(t)∧

2 6.85 6.90
3 6.79 6.82
4 6.86 6.79
5 6.93 6.85
6 6.87 6.84
7 6.85 6.81
8 7.01 6.92
9 6.95 6.98

10 7.01 7.00
11 6.97 7.01
12 6.93 6.98
13 6.78 6.93
14 6.79 6.84

aForecasts of loge(total deaths due to influenza and pneumonia)
= zDIP(t) are given for the 3rd through 14th weeks of 2002; model
forecasts are denoted by zDIP(t)∧.

presented only for purposes of illustration. When forthcoming peak periods
are officially monitored for purposes of forecasting the severity of influenza,
model updates should be performed on a weekly basis. For model updates in
scenarios such as Figure 13.1.1, the first harmonic (i.e., cos mt and sin mt)
tends to be the dominant predictor and explains approximately 60% of the
total variation. However, the coefficients and the other explanatory variables
are subject to change. Model updates are also imperative for purposes of
evaluating the need for including higher harmonics in the model.

Regarding time-varying volatility, GARCH-type modeling associated
with model update in (13.3.3) results in the following forecast for e2

DIP(t):

e2
DIP(t)

∧ = 0.0095.72 + 0.2694.06e2
DIP(t−1). (13.3.4)

Model forecasts based on (13.3.3) and (13.3.4) can be used to heuristically
identify and define the level of an epidemic. If zDIP(t)∧ and e2

DIP(t)
∧ are

used as estimates of the mean and variance of, say, the normal probability
distribution (NPD), three epidemic levels may be defined:

• Level 1 epidemic: zDIP(t) exceeds the upper 10% level of the NPD.
• Level 2 epidemic: zDIP(t) exceeds the upper 5% level of the NPD.
• Level 3 epidemic: zDIP(t) exceeds the upper 1% level of the NPD.
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